タグ

mathematicsとお仕事に関するzerosetのブックマーク (8)

  • 統計検定を理解せずに使っている人のために I - J-Stage

    318 化学と生物 Vol. 51, No. 5, 2013 セミナー室 研究者のためのわかりやすい統計学-1 統計検定を理解せずに使っている人のために I 池田郁男 東北大学大学院農学研究科 319 化学と生物 Vol. 51, No. 5, 2013 1 1 320 化学と生物 Vol. 51, No. 5, 2013 2 μ σ σ 3 * 2 3 * 321 化学と生物 Vol. 51, No. 5, 2013 4 * 5 * 6 σ 4 5 6 σ * * 322 化学と生物 Vol. 51, No. 5, 2013 μ μ μ μ μ σ 7 σ σ σ σ σ σ σ σ σ σ 8 8 9 7 σ 323 化学と生物 Vol. 51, No. 5, 2013 9 10 11 * σ σ * * * * 10 11 * * * * 324 化学と生物 Vol. 51, No.

  • 回帰分析(その1):回帰分析で交絡因子の影響を取り除く

    学問の分野に関わらず研究をするにあたっては「回帰分析」を避けて通ることはできません。普段から研究やデータ分析に馴染みにある人たちには、このブログでそんな基的なことを解説するの?と思われる人もいるかもしれません。しかし、このブログは通読すれば知識がゼロの状態からでもデータを解析して読み解くのに必要なスキルセットが一通り身につくようになることをゴールにしているので、そのためには回帰分析をおろそかにするわけにはいきません。逆にビジネスをやっている方で、その業界では回帰分析はあまりやられておらず、エクセルのグラフだけで勝負しているようであれば、回帰分析をきちんとできるようになるだけで圧倒的な強みになるはずです。統計解析ソフトできちんと回帰分析して得られたデータが「機関銃」だとすると、エクセルでの解析は「竹やり」みたいなものだからです。いずれにしても数式を理解することよりもコンセプトをきちんと理解

    回帰分析(その1):回帰分析で交絡因子の影響を取り除く
  • サービス終了のお知らせ - NAVER まとめ

  • Rと主成分分析

    観測、実験、調査では、通常個体の属性を複数の項目(変数)に分けて記録する。変数が少ない場合は、簡単なグラフや基統計量などでデータの構造を明らかにすることができるが、変数が多くなるとデータの構造が複雑になり、解析が難しくなる。一方、変数が多くなると変数の間には相関がある可能性も増える。 主成分分析(principal component analysis)は、多くの変数により記述された量的データの変数間の相関を排除し、できるだけ少ない情報の損失で、少数個の無相関な合成変数に縮約して、分析を行う手法である。主成分分析の手法はホテリング(Hotelling)によって1933年頃提案された。 変数が1つ、2つの場合は、棒グラフや散布図でデータの構造を読み取ることが可能であり、主成分分析を行う必要がないが、主成分分析の考え方を説明するため、ここでは2変数の場合の例を用いることにする。 たとえ

  • 【数学】固有値・固有ベクトルとは何かを可視化してみる - Qiita

    線形代数に固有値という概念が出てきます。最初はイメージしにくいのでは、と思うのですが重要な概念かつ、統計学でも頻繁に利用されるので、これもこの可視化シリーズとしてアニメーショングラフを書いて説明することを試みたいと思います。 このようなグラフの意味を読み解いていきます。 1.固有値・固有ベクトルとは? まず、固有値・固有ベクトルとはなんぞや。数式で表すと下記のことです。 ${\bf x}\neq {\bf 0}$の${\bf x}$で、行列Aをかけると、長さが$\lambda$倍になるような${\bf x}$の事を固有ベクトル, $\lambda$を固有値と言います。 知らない人は???で、これだけではよくわからないですね。 早速、グラフィカルな説明も交えて説明していきたいと思います。 2.行列Aによる線形変換 固有値・固有ベクトルの説明の前に、行列による線形変換について取り上げます。 例

    【数学】固有値・固有ベクトルとは何かを可視化してみる - Qiita
  • 統計解析 & R言語超初心者入門資料まとめ

    興味を持ち続けていた統計解析や、R言語の勉強をはじめました! まだまだ初歩の初歩ですが、この記事がいつか偉大な一歩になれるように頑張っていく所存ですw まずは、R言語や統計解析に関する入門記事や、モチベーションがアップしそうな記事をまとめていきます! (02/23 11:00) 初学者の人にお勧めな資料にフォーカスしてまとめ直し 🍮 [スライド] 統計学入門 統計学の全体像をつかむのに最適なスライドです。初歩…とはちょっと呼べないくらい内容が深いです! 🏈 [スライド] 初めての「R」 統計解析を始めるときにWindowsな方も、Macな方もとっつきやすのが『R』です。このRを完全初心者をターゲットに説明をしていただけている資料です。超わかりやすいです! 🍄 [デスクトップアプリケーション] R用のIDE: RStudioRStudio RStudioはR言語用のIDEです。Wind

    統計解析 & R言語超初心者入門資料まとめ
  • 非エンジニアにもオススメ。数学が苦手な統計初心者がR言語を触ってみる。

    こんにちは。海原です。 ここ最近、統計学が流行していますね。「統計学が最強の学問である」がきっかけになっているのでしょうか。数年前に比べてマーケティングが重要視される今日、統計の需要が増えたのかもしれません。私はまだこのを読んでいませんが、読もうと思った矢先にたまたま統計ツールRに出会いまして、調べながら少しいじってみました。Rを使った感触から申し上げますと、SQLを叩いて好きなデータをピックアップするよりもずっと簡単で小気味良いのです。 他の統計ツールには色々な種類があるようですが、よく知られるものとしてIBMのSPSS (IBM)(有償)があります。 その点、RはMac/Win両方に対応しており無償です。またSPSSに劣らない機能を備えており、統計学者の間でデファクトスタンダードとなっているようです。 Rに関して検索すれば丁寧な解説サイトがたくさんありますので、インストールから何の心

    非エンジニアにもオススメ。数学が苦手な統計初心者がR言語を触ってみる。
  • むしろ数式が苦手だけど統計を勉強したいという人はRをやるといいかもしれない - Line 1: Error: Invalid Blog('by Esehara' )

    はじめに なぜか唐突にRブームが俺の中でやってきてしまってどうしようもないので、Rのを注文しまくってたりしていたら、下のようなの山が出来てしまいました。 これらのを付箋でペタペタしながら読み進めていくうちに、段々とRというのはどういう言語で、どういう風に勉強するといいのか、という方針が固まってきたので、ここにメモをしておきます。 Rとはどのような言語か 一言で、しかも乱暴に言ってしまうならば「統計に特化したPHP」というのが一番雰囲気を伝えられるかもしれない。いや、PHPの悪評は知っているし、ガチでRをやっている人にとっては嫌がられることもわかっているけど、あえてそういう説明が、あくまで入り口としてはわかりやすいのではないかと。 どういうことかというのを言い訳します。 自分が読んだ感じだと、統計というのは、「何らかのデータ」と「分析するためのツールとしての数式」と「その数式が意図する

    むしろ数式が苦手だけど統計を勉強したいという人はRをやるといいかもしれない - Line 1: Error: Invalid Blog('by Esehara' )
  • 1