自然言語処理技術のなかでも固有表現抽出(Named Entity Recognition; NER)は情報抽出の処理をやろうとするときにとても役立つ。 応用は幅広く、会社名や個人名などの情報抽出処理、個人情報除去などのような抽出した情報に対する処理、代名詞の解析(照応解析・共参照解析)のような文脈解析処理などに用いられる。 最も簡単なNERの方法としては、辞書や形態素解析結果や正規表現などに基づくルールを用いて、単語列にラベリングする方法があるが、会社名など判断が難しいケースについては機械学習によってNERを行うことが有効なことが多い。機械学習ベースの既存の固有表現抽出器を使ってみたい場合には、GiNZAやKNPのようなNERモデルが同梱されているツールを使用してみるのがよい。 しかし公開モデルの性能では満足いかない場合に自分でモデルを構築しようとしても、公開データセットが見つけにくかった