本スライドでは、有名なアルゴリズムを概観し、アルゴリズムに興味を持っていただくことを目標にします。 第 1 部:アルゴリズムとは 第 2 部:学年を当ててみよう 第 3 部:代表的なアルゴリズム問題 第 4 部:コンピュータとアルゴリズム

本スライドでは、有名なアルゴリズムを概観し、アルゴリズムに興味を持っていただくことを目標にします。 第 1 部:アルゴリズムとは 第 2 部:学年を当ててみよう 第 3 部:代表的なアルゴリズム問題 第 4 部:コンピュータとアルゴリズム
最後に、17 章で PとNPに関する話題を解説し、世の中には「効率的に解くアルゴリズムを設計することができそうにない難問」が多数あることを見ます。18 章で、これらの難問に取り組むための方法論をまとめます。 競プロをやっている方向け 扱っている題材の難易度については、こんな感じのイメージです! チーター本 < 本書 = 螺旋本 < 蟻本 難易度が近い螺旋本は、スタンスが異なる部分もありますので、よい形で共存できたら、という想いです。 螺旋本と比べると、「動的計画法」「貪欲法」「二分探索法」などの設計技法に関する話題をより重視しています 螺旋本は「ライブラリを揃えていく」という思想なので、設計技法よりもライブラリになるものを重視する立場です 本書では、紙面の都合で「計算幾何学」と「整数論」には触れられませんでしたが、これらは螺旋本には載っています 2-2. 本書の対象読者 本書は、「アルゴリ
1.コーディングインタビューとは何か コーディングインタビュー(Coding Interview、またはProgramming Interview)とは、1時間ほどの制限時間内に小さなプログラミング問題を解かせる面接形式のことをいう。プログラマー、またはデータサイエンティストなどの採用試験として、米国を含むいくつかの国で用いられている。「物理的なホワイトボード上にプログラムを書く」という形式で実施されることが多い。「オンライン上の共有エディタで書く」といった形式のこともある。Googleなどは自社のYoutubeチャンネル動画でも説明している。 出題される問題としては、例えば、「複数の数字numbersと整数kが与えられたとき、合計がkとなる数字の組を1つ出力せよ」といったものがある。この問題は有名なので通称が付いており、Two Sumと呼ばれる。 Two Sumの一例。与えられた数値の並
情報科学科の卒業生やプログラマの中には、UberやNetflixのような新興企業や、 Amazon 、 Microsoft 、 Google のような大企業や、InfosysやLuxsoftのようなサービスを基本とする企業で、プログラミング、コーディング、ソフトウェア開発の仕事に就きたいと考える人が大勢います。しかし、実際にそういった企業で面接を受ける場合、大半の人が プログラミングに関してどのような質問をされるか 見当もつきません。 この記事では、 新卒生からプログラマになって1〜2年までの 経験値が異なる人たち向けに、それぞれの プログラミングの面接でよく聞かれる質問 をいくつか紹介していきます。 コーディングの面接では、主に データ構造とアルゴリズムに基づいた質問 がされますが、 一時変数を使わずにどのように2つの整数をスワップするのか 、というような論理的な質問もされるでしょう。
オープンソース版 Open Data Structures 日本語訳の PDF ファイルを以下で公開しています。最新のソースコードは GitHub のリポジトリ https://github.com/spinute にあり、適宜こちらの PDF ファイルに反映しています。 以下のものは C++ 版です(Java 版はこちら、疑似コード版はこちらにあります)。 目次 訳者まえがき 本書の読み方 訳者謝辞 なぜこの本を書いたのか 謝辞 第1章 イントロダクション 効率の必要性 インターフェース 数学的背景 計算モデル 正しさ、時間計算量、空間計算量 コードサンプル データ構造の一覧 ディスカッションと練習問題 第2章 配列を使ったリスト ArrayStack:配列を使った高速なスタック操作 FastArrayStack:最適化された ArrayStack ArrayQueue:配列を使ったキュ
なんか前回伸びたので 参考 hamayanhamayan.hatenablog.jp ei1333's page 宣伝 beet-aizu.hatenablog.com 以下とりあえず辞書順(そのうち典型度順にしたい) Binary Indexed Tree 一点加算、先頭からの区間和、k番目に大きい値が で可能 library/binaryindexedtree.cpp at master · beet-aizu/library · GitHub 容易に多次元に拡張が可能(実用上は2次元くらい? library/binaryindexedtree2D.cpp at master · beet-aizu/library · GitHub Binary Trie 二進数を管理するTrie木 全体にXOR、k番目に大きい値、lower_bound等が で可能 library/binarytri
Photo by Oferico 皆さんはアルゴリズムやデータ構造について勉強したことはありますか?そして、基本的なアルゴリズムについて、どのようなものがあって、どのようなときに使うとよいかといったことを説明することができますか? 仕事をしていると、プログラミング言語等の勉強や業務に忙しくて、正直アルゴリズムどころではないという場合がほとんどでしょう。しかし、いつか勉強しようと思っていたけど、基本的なアルゴリズムにどんなものがあるのかなんて今更聞けないな……ということもあるかと思います。 今回はそんな方に向けて、基本的なアルゴリズムの一部の概要に加え、アルゴリズムの勉強に役立つサイト、書籍をご紹介したいと思います。 ■アルゴリズムを学ぶ意味 例えば、ソート等については、通常はすでにソート関数があるので、自分で作らなくても済む=アルゴリズムも勉強しなくていいと思ってしまうかもしれません。しか
動的計画法とメモ化再帰 今回は、非常によく用いられるアルゴリズムである、「動的計画法」「メモ化再帰」について説明します。この2つはセットで覚えて、両方使えるようにしておくと便利です。 なお、メモ化再帰に関しては、第5・6回の連載の知識を踏まえた上で読んでいただけると、理解が深まります。まだお読みになっていない方は、この機会にぜひご覧ください。 中学受験などを経験された方であれば、こういった問題を一度は解いたことがあるのではないでしょうか。小学校の知識までで解こうとすれば、少し時間は掛かるかもしれませんが、それでもこれが解けないという方は少ないだろうと思います。 この問題をプログラムで解こうとすると、さまざまな解法が存在します。解き方によって計算時間や有効範囲が大きく変化しますので、それぞれのパターンについて考えます。 以下の説明では、縦h、横wとして表記し、プログラムの実行時間に関しては、
最強最速アルゴリズマー養成講座: そのアルゴリズム、貪欲につき――貪欲法のススメ アルゴリズムの世界において、欲張りであることはときに有利に働くことがあります。今回は、貪欲法と呼ばれるアルゴリズムを紹介しながら、ハードな問題に挑戦してみましょう。このアルゴリズムが使えるかどうかの見極めができるようになれば、あなたの論理的思考力はかなりのレベルなのです。(2010/9/4) 最強最速アルゴリズマー養成講座: 病みつきになる「動的計画法」、その深淵に迫る 数回にわたって動的計画法・メモ化再帰について解説してきましたが、今回は実践編として、ナップサック問題への挑戦を足がかりに、その長所と短所の紹介、理解度チェックシートなどを用意しました。特に、動的計画法について深く掘り下げ、皆さんを動的計画法マスターの道にご案内します。(2010/5/15) 最強最速アルゴリズマー養成講座: アルゴリズマーの登
プログラムの実行に掛かる時間を把握しておくのは、プログラミングを行う上で基本的な注意点です。今回は、計算量のオーダーについて学びながら、TopCoderのMedium問題を考えてみましょう。 プログラムの実行時間 業務としてプログラミングをされている方には釈迦に説法かもしれませんが、プログラムの実行に掛かる時間を把握しておくのは、プログラミングを行う上で基本的な注意点です。そしてこれは、TopCoderなどのコンテストでプログラムを組む際にもよく当てはまります。通常、こうしたことは感覚的に理解している方がほとんどだと思いますが、具体的にどれくらいのループを回すと何秒掛かる、といった基準を持っている人は少ないのではないでしょうか? 非常に基本的なことですが、プログラムの実行時間に関して再確認しておきたいと思います。 TopCoderの制限に関して TopCoderでは、実行時間およびメモリ使
id:naoya さんのLatent Semantic Indexing の記事に触発されて、ここ1週間ほどちょくちょく見ている行列の近似計算手法について書いてみる。ここでやりたいのは単語-文書行列(どの単語がどの文書に出てきたかの共起行列)や購入者-アイテム行列(どの人がどの本を買ったかとか、推薦エンジンで使う行列)、ページ-リンク行列(どのページからどのページにリンクが出ているか、もしくはリンクをもらっているか。PageRank などページのランキングの計算に使う)、といったような行列を計算するとき、大規模行列だと計算量・記憶スペースともに膨大なので、事前にある程度計算しておけるのであれば、できるだけ小さくしておきたい(そして可能ならば精度も上げたい)、という手法である。 行列の圧縮には元の行列を A (m行n列)とすると A = USV^T というように3つに分解することが多いが、も
チャリンコ通勤による滝のような汗で、朝からTシャツがシースルーになってしまうmikioです。さて今回は、Tokyo Cabinet(TC)のデータベースを各種のアルゴリズムで圧縮して利用する方法についてご紹介します。 圧縮B+木 B+木とは、比較関数の値による順序が近いレコード群を単一のページにまとめ、各ページにB木(multiway balanced treeの略であり、二分木(binary tree)とは違います)の索引を張ったものです。理論的にはレコードの探索も更新も O(log n) の時間計算量で行え、内部ノード(B木)の操作をキャッシュすると実質的には O(1) の時間計算量で探索や更新が行えるという、かなり安定した性能を備えるデータ構造です。その上、レコードが一定の順序に基づいて並べられているので、数値の範囲検索や文字列の前方一致検索が高速に行えたり、カーソルによって順序に基
1.はじめに プログラミング言語とはシステム化する対象物を抽象化し、コンピュータで処理可能なコードを記述するために用いる人工言語である。プログラミング言語はコンピュータの機械語と一対一の対応をもったアセンブラから始まり、コンパイラを用いて機械語に翻訳することを前提としたコンパイラ言語、インタプリタと呼ばれるプログラムがソースコードを解釈し実行するスクリプト言語と、記述できる抽象度を高める方向へと進化してきた。 プログラミング言語はその存在理由から、より抽象度の高い記述が行えること、すばやい開発を行える事が求められる。抽象度の高い記述とは、プログラムがどういう処理を行うか(HOW)ではなく何の処理を行うか(WHAT)を記述しやすい構文、機能を持っていることを、すばやい開発とは記述性の高さ、コードの密度の高さ、バグの発生しにくい構文、機能を持っていることをさす。 この抽象度の高い記述、すばやい
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く