概要 深層学習フレームワークCaffeを使って,Deep Q-Networkという深層強化学習アルゴリズムをC++で実装して,Atari 2600のゲームをプレイさせてみました. Deep Q-Network Deep Q-Network(以下DQN)は,2013年のNIPSのDeep Learning Workshopの"Playing Atari with Deep Reinforcement Learning"という論文で提案されたアルゴリズムで,行動価値関数Q(s,a)を深層ニューラルネットワークにより近似するという,近年の深層学習の研究成果を強化学習に活かしたものです.Atari 2600のゲームに適用され,既存手法を圧倒するとともに一部のゲームでは人間のエキスパートを上回るスコアを達成しています.論文の著者らは今年Googleに買収されたDeepMindの研究者です. NIPS