下記の通りです。 入門的な部分(初日前半) 川崎講師「データの可視化と要約」 立森講師「相関と独立性」 立森講師「因果と相関」 L-Aの中では比較的高度な部分(最終日) 二宮講師「モデル選択とAIC」 二宮講師「一般化線形モデル(GLM)」【2020.6.3追加公開】 伊庭講師「主成分分析とその周辺」 これらの動画は受講生の復習用に準備されたもので、画質等も十分ではありませんが、その点はご容赦ください。各部分は比較的独立に視聴できるようになっておりますが、2.の部分で今回非公開の部分への参照があります。テキストおよびスライドの頒布は行っておりません。 「データの可視化と要約」講師:川崎 能典(統計数理研究所) 1. データの属性と可視化 2. 分布特性の定量的記述 3. 欠測値について 「相関と独立性」講師:立森 久照(国立精神・神経医療研究センター) 1. 図による2変数間の可視化 2.