タグ

algorithmとperformanceに関するHeavyFeatherのブックマーク (6)

  • ネットワークプログラムのI/O戦略 - sdyuki-devel

    図解求む。 以下「プロトコル処理」と「メッセージ処理」を分けて扱っているが、この差が顕著に出るのは全文検索エンジンや非同期ジョブサーバーなど、小さなメッセージで重い処理をするタイプ。ストリーム指向のプロトコルの場合は「プロトコル処理」を「ストリーム処理」に置き換えるといいかもしれない。 シングルスレッド・イベント駆動 コネクションN:スレッド1。epoll/kqueue/select を1つ使ってイベントループを作る。 マルチコアCPUでスケールしないので、サーバーでは今時このモデルは流行らない。 クライアントで非同期なメッセージングをやりたい場合はこのモデルを使える: サーバーにメッセージを送信 イベントハンドラを登録;このときイベントハンドラのポインタを取っておく イベントハンドラ->フラグ がONになるまでイベントループを回す イベントハンドラ->結果 を返す 1コネクション1スレッ

    ネットワークプログラムのI/O戦略 - sdyuki-devel
  • PerlとRubyで省メモリなハッシュを使おう - mixi engineer blog

    サボっていた早朝ジョギング@駒沢公園を再開して2週間たち、やっと抜かれる数より抜く数の方が増えてきたmikioです。今回は、PerlRubyのハッシュの代用としてTokyo Cabinetを使うことでメモリ使用量を激減させられることを説明します。 抽象データベースAPI Tokyo Cabinetには抽象データベースという機構があり、先日、そのPerlRubyのバインディングをリリースしました。それを使うと、各種言語のハッシュとほぼ同じような共通したインターフェイスで、以下のデータ構造を利用することができます。 オンメモリハッシュ:各種言語に標準のハッシュと同じく、メモリ上でkey/valueの関係を表現する。 オンメモリツリー:メモリ上の二分探索木としてkey/valueの関係を表現する。 ファイルハッシュ:いわゆるDBMとして、ファイル上でkey/valueの関係を表現する。 ファ

    PerlとRubyで省メモリなハッシュを使おう - mixi engineer blog
  • B木 - naoyaのはてなダイアリー

    昨年から続いているアルゴリズムイントロダクション輪講も、早いもので次は18章です。18章のテーマはB木(B Tree, Bツリー) です。B木はマルチウェイ平衡木(多分木による平衡木)で、データベースやファイルシステムなどでも良く使われる重要なデータ構造です。B木は一つの木の頂点にぶら下がる枝の数の下限と上限を設けた上、常に平衡木であることを制約としたデータ構造になります。 輪講の予習がてら、B木を Python で実装してみました。ソースコードを最後に掲載します。以下は B木に関する考察です。 B木がなぜ重要なのか B木が重要なのは、B木(の変種であるB+木*1など)が二次記憶装置上で効率良く操作できるように設計されたデータ構造だからです。データベースを利用するウェブアプリケーションなど、二次記憶(ハードディスク)上の大量のデータを扱うソフトウェアを運用した経験がある方なら、いかにディ

    B木 - naoyaのはてなダイアリー
  • MapReduce on Tyrant - mixi engineer blog

    先日、隅田川の屋形船で花見と洒落込んだのですが、その日はまだ一分咲きも行ってなくて悲しい思いをしたmikioです。今回はTokyo Tyrant(TT)に格納したデータを対象としてMapReduceのモデルに基づく計算をする方法について述べます。 MapReduceとは Googleが使っているという分散処理の計算モデルおよびその実装のことだそうですが、詳しいことはググってください。Googleによる出自の論文やApacheプロジェクトによるHadoopなどのオープンソース実装にあたるのもよいでしょう(私は両者とも詳しく見ていませんが)。 今回の趣旨は、CouchDBMapReduceと称してJavaScriptで実現しているデータ集計方法をTTとTCとLuaでやってみようじゃないかということです。簡単に言えば、以下の処理を実装します。 ユーザから計算開始が指示されると、TTは、DB内の

    MapReduce on Tyrant - mixi engineer blog
  • アルゴリズム - 同じ文字列のn回繰り返しをlog n回で作る方法 : 404 Blog Not Found

    2009年01月31日01:00 カテゴリLightweight LanguagesMath アルゴリズム - 同じ文字列のn回繰り返しをlog n回で作る方法 これなのですが.... 同じ文字列のn回繰り返しを作る最速の方法を探求してみた - muddy brown thang ちょっとした事情により、ある文字列のn回繰り返しを作る関数 (PHPでいうところのarray_repeat(), Perlで言うところの「"..." x n」、RubyPythonで言うところの「"..." * n」) を高速に実装しなければならない状況に遭遇したのでベンチマークをとってみたところ、その結果がとても新鮮で驚いたので、これを共有しつつもダメ出ししてもらえないかなーと思って晒してみることに。 なぜかもっとシンプルな奴がなかったので。 以下、比較。初期値はIEにあわせてあります。Firefox/Saf

    アルゴリズム - 同じ文字列のn回繰り返しをlog n回で作る方法 : 404 Blog Not Found
  • DBMによるテーブルデータベース その弐 - mixi engineer blog

    インフルエンザで休んだ影響で仕事が鬼のように溜まって消化不良のmikioです(こんな記事を書いている場合じゃない)。さて今回は、Tokyo Cabinetでリレーショナル風データベースを実現したテーブルデータベース(TCTDB)の実装について説明します。 SQLiteとの違いは? SQLiteはアプリケーション組み込み型のSQL対応リレーショナルデータベースのライブラリです。TCのテーブルデータベースよりもはるかに高機能で、それでいて性能も大変優れています。いわゆるデスクトップアプリケーションに組み込むデータベースをお探しであれば、TCなんかではなく、断然SQLiteがおすすめです。 一方で、TCなどのDBMは、より単純なデータ操作をより高速に実行できるように設計および実装されています。典型的なユースケースとして、大規模Webサイトのアカウント管理や、データマイニングに伴う集計操作が挙げら

    DBMによるテーブルデータベース その弐 - mixi engineer blog
  • 1