ネイピア数の無理性の証明(ねいぴあすうのむりせいのしょうめい)は、1744年にオイラーが初めて行った。実際、ネイピア数 e は 2 < e < 3 を満たす無理数である。証明は背理法による。すなわち、e が有理数であると仮定して矛盾を導く。e が無理数であることの証明は、円周率 π が無理数であることの証明よりずっと易しい。π の無理性が初めて示されたのは1761年のことである。 e を底とする指数関数 ex は以下のようにテイラー展開される。 x = 1 を代入すると 以下、これを e の定義として無理数であることを証明する。 e = a/b を満たす自然数 a, b が存在すると仮定すると b! ⋅ e は以下のように展開される。 左辺は であるから自然数である。右辺は ( ) 内の b! から b!/b! までの項は全て自然数であるが、{ } 内の b!/(b + 1)! 以降の全て