先週末、はてな社内の勉強会で構造学習、特に実装が簡単な構造化パーセプトロンについて発表しました。発表資料と説明用にサンプルで書いたPerlの品詞タグ付けのコードへのリンクを張っておきます。 今日からできる構造学習(主に構造化パーセプトロンについて) from syou6162 structured_perceptron/structured_perceptron.pl at master · syou6162/structured_perceptron 「えっ、Perlかよ」という人がいるといけないので、Clojureで構造化パーセプトロンを使った係り受け解析のサンプルコードへのリンクも張っておきます(2種類あります)。PerlもClojureもあれば8割くらいの人はカバーできそうなので、安心ですね。 syou6162/simple_shift_reduce_parsing syou616
はじめに 数理情報工学実験第二という演習で、Raspberry Piをつかって何かを作ることになりました。そこでAMATERASUという自動ノート取り装置を作ったので紹介します。 そもそもRaspberry Piって? Raspberry Pi3 Model B ボード&ケースセット (Element14版, Clear)-Physical Computing Lab 出版社/メーカー: TechShareメディア: エレクトロニクスこの商品を含むブログ (3件) を見る これです。安くて小型で色んなセンサーをつけて遊べるコンピュータです。今回はカメラモジュールを使いました。 自動ノート取り装置とは 自動ノート取りの目標は、講義を撮影した動画*1を処理することで、ノートの代わりとして使える画像を出力することです。具体的には次のgifのような画像を次々出力していくのを目標にしています。黒くな
class MFbpr(Recommender): ''' コンストラクタとか他の処理 ''' def buildModel(self): loss_pre = sys.float_info.max nonzeros = self.trainMatrix.nnz hr_prev = 0.0 sys.stderr.write("Run for BPR. \n") for itr in xrange(self.maxIter): start = time.time() # Each training epoch for s in xrange(nonzeros): # sample a user u = np.random.randint(self.userCount) itemList = self.trainMatrix.getrowview(u).rows[0] if len(itemL
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く