mathとprogramに関するLazySoulのブックマーク (4)

  • ラムダ計算基礎文法最速マスター - 貳佰伍拾陸夜日記

    ラムダ計算は, 多くのプログラミング言語, とくに関数型言語の原形になっています. ラムダ計算について理解しておくことは, 多くのプログラミング言語の習得に役立つでしょう. ラムダ計算はチューリング完全で, 計算能力としてはふつうのプログラミング言語と同じです. ラムダ計算で計算を書く訓練をしておくことは, 任意の計算を関数のみを使って(他の制御構文を用いずに)書くときに役立ちます. ふつうに書いたら煩雑な処理を, 関数型言語のやり方で書くとすっきりすることが多々あり, コードを自由自在に書くためには必須の考え方と言えるでしょう. 項 ラムダ計算の式を項(term)と言います. 項は変数, 抽象, 適用のいずれかです. 変数 変数(variable)はふつう1文字で書きます. 変数には関数内の束縛変数(bound variable)か自由変数(free variable)かという区別があり

    ラムダ計算基礎文法最速マスター - 貳佰伍拾陸夜日記
  • 浮動小数点数 - Wikipedia

    浮動小数点数(ふどうしょうすうてんすう、英: floating-point number)は、実数をコンピュータで処理(演算や記憶、通信)するために有限桁の小数で近似値として扱う方式であり[1]、コンピュータの数値表現として広く用いられている。多くの場合、符号部、固定長の指数部、固定長の仮数部、の3つの部分を組み合わせて、数値を表現する。 この節はパターソンらの記述に基づく[1]。 実数は0以上かつ1以下のような有限の範囲でも、無限個の値(種類)が存在するため、コンピュータでは妥当なビット数で有限個の値(種類)の近似値で扱う必要がある。 実数-1/3は10進数表現では無限小数となるが、有限桁の小数で近似値を表記できる。下の例では10進数での4桁としている。 -1/3 -1 x 0.33333333333333... -1 x 0.3333 x 100 -1 x 3.333 x 10-1 下

  • 一番右端の立っているビット位置を求める「ものすごい」コード - 当面C#と.NETな記録

    一番右端の立っているビット位置(RightMostBit)を求めるコードで速いのないかなーと探していたら、ものっっっすごいコードに出会ってしまったのでご紹介。2ch のビット演算スレで 32bit 値のコードに出会って衝撃を受けて、その後 64bit 値版のヒントを見つけたのでコードを書いてみました。 この問題は ハッカーのたのしみ―物のプログラマはいかにして問題を解くか (Google book search で原著 Hacker's delight が読めたのでそれで済ませた) で number of trailing zeros (ntz) として紹介されています。bit で考えたときに右側に 0 がいくつあるかを数えるもの。1 だと 0、2 だと 1、0x80 なら 7、12 なら 2 といったぐあい。0 のときに表題どおりの問題として考えるといくつを返すの?ってことになるので、

    一番右端の立っているビット位置を求める「ものすごい」コード - 当面C#と.NETな記録
  • FF(16進数の掛け算)を覚えよう - やねうらおブログ(移転しました)

    最近、あるプログラマと話していて気づいたのだけど、彼は16進数の2桁と1桁との掛け算(FDh×5とか)が出来ない。やり方自体を知らないのだ。彼はWindowsの電卓を立ち上げて計算していた。 そのときは「プログラマでなくともこんなこと知ってて当然だろ!」と思ったのだけど、その後、10人ぐらいのプログラマに出来るかどうか聞いてみたが誰も出来ない。 結局、「普通は出来ない」のだと私は理解した。しかし16進数の掛け算はそんなに難しくない。私が子供のころには、まわりにFF(1×1=1に始まって、F×F=E1まで)を丸暗記している人がいっぱいいた。情報教育の一環として中学か高校で教えても計算の仕方ぐらい教えればいいのになぁと思っている。 前置きが長くなったが、以下にやり方などを書いておく。 ■ 16進数に馴染もう 16進数では、A = 10 , B = 11 , C = 12 , D = 13 ,

    FF(16進数の掛け算)を覚えよう - やねうらおブログ(移転しました)
  • 1