第2回 ニューラルネットワーク最速入門 ― 仕組み理解×初実装(中編):TensorFlow 2+Keras(tf.keras)入門 ニューラルネットワーク(NN)の基礎の基礎。NNの基本単位であるニューロンはどのように機能し、Python+ライブラリでどのように実装すればよいのか。できるだけ簡潔に説明。また、活性化関数と正則化についても解説する。

対象読者 Tensorboardを使っている人 おまけ Kerasに関する書籍を翻訳しました。画像識別、画像生成、自然言語処理、時系列予測、強化学習まで幅広くカバーしています。 直感 Deep Learning ―Python×Kerasでアイデアを形にするレシピ Tensorboardとは モデルの値を確認する可視化ツールであり、日々確認できる項目が増えています。 これを使いこなせると機械学習エンジニアの仕事がスムーズになると思います。 この記事で紹介するTensorboardの機能 SCALARS: ロスや精度などの学習中の挙動を確認するために使用 IMAGES:各層の重みやバイアスの遷移が確認できる GRAPHS:モデルの構成を確認するために使用 DISTRIBUTIONS:各層の値の分布 HISTOGRAMS:各層の重みのヒストグラム PROJECTOR:識別などで潜在空間が適切に
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く