はじめに 交差検証は「ものさし」のようなものです。いくら良い結果が出たところでその「ものさし」の目盛りがズレていては全ての長さが間違っていたことになります。交差検証も同様です。交差検証の方法が間違っていた場合いくら良いモデルが出来たと思っても間違っていることになります。全ての努力は水の泡です。ですから交差検証は何かの問題を解くときに一番最初に取り組むものですし、機械学習の中で一番重要と言っても過言ではないです。この記事ではそんな交差検証を紹介し、良い「ものさし」が作れるデータサイエンティストを目指します。 目次 基礎から発展の順で書きます。基礎では主にsklearnのドキュメントを参考にし、発展のところではkaggleなどで実際に使われたCVの手法を書きます。発展は面白いCVが多いですので是非参考に。 なお筆者は専門家ではないので(一応確認はしているが)間違いもあるかと思われます。その時は