タグ

数学とwikipediaに関するSuperAlloyZZのブックマーク (15)

  • ウェーブレット変換 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ウェーブレット変換" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2022年2月) ウェーブレット変換(ウェーブレットへんかん、英: wavelet transformation)は、周波数解析の手法の一つ。基底関数として、ウェーブレット関数を用いる。フーリエ変換によって周波数特性を求める際に失われる時間領域の情報を、この変換においては残すことが可能である。フーリエ変換でも窓関数を用いる窓フーリエ変換で時間領域の情報は残せたが、窓幅を周波数に合わせて固定する必要があるため、広い周波数領域の解析には向かなかった。ウェーブレット変換では、基

  • ベイズ推定 - Wikipedia

    ベイズ推定(ベイズすいてい、英: Bayesian inference)とは、ベイズ確率の考え方に基づき、観測事象(観測された事実)から、推定したい事柄(それの起因である原因事象)を、確率的な意味で推論することを指す[1]。 ベイズの定理が基的な方法論として用いられ、名前の由来となっている。統計学に応用されてベイズ統計学[2]の代表的な方法となっている。 ベイズ推定においては、パラメータの点推定を求めることは、ベイズ確率(分布関数)を求めた後に、決められた汎関数:の値(平均値もしくは中央値など)を派生的に計算することと見なされる。 標語的には、「真値は分布する」、「点推定にはこだわらない」などの考え方に依拠している。 いま、AおよびXを離散確率変数とする。ここで A を原因、X をそれに対する証拠(つまり原因によって起きたと想定される事象)とするとき、 P(A) = 事象 A が発生する

  • ナビエ–ストークス方程式 - Wikipedia

    ナビエ–ストークス方程式(ナビエ–ストークスほうていしき、英: Navier–Stokes equations)は、流体の運動を記述する2階非線型偏微分方程式であり、流体力学で用いられる。[1][2]アンリ・ナビエとジョージ・ガブリエル・ストークスによって導かれた[3][4]。日語の文献だとNS方程式とも略される。[5]ニュートン力学における運動の第2法則に相当し、運動量の流れの保存則を表す。

    ナビエ–ストークス方程式 - Wikipedia
  • マクスウェルの方程式 - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。 適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2022年7月) マクスウェルの方程式(マクスウェルのほうていしき、英: Maxwell's equations、マクスウェル方程式とも)は、電磁場を記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された[1]。マクスウェルの方程式はマックスウェルの方程式とも表記される。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれる。 これらの方程式系に整理されたことから、電場と磁場の統一(電磁場)、光が電磁波であることなどが導かれ、その時空論としての特殊相対性理論に至る。後年、アイ

    マクスウェルの方程式 - Wikipedia
  • ルンゲ=クッタ法 - Wikipedia

    数値解析においてルンゲ=クッタ法(英: Runge–Kutta method)とは、初期値問題に対して近似解を与える常微分方程式の数値解法に対する総称である。この技法は1900年頃に数学者カール・ルンゲとマルティン・クッタによって発展を見た。 古典的ルンゲ=クッタ法[編集] 一連のルンゲ=クッタ公式の中で最も広く知られているのが、古典的ルンゲ=クッタ法 (RK4、もしくは単に狭義の ルンゲ=クッタ法、英: the (classical) Runge–Kutta method) などと呼ばれる4次の公式である。 次の初期値問題を考える。 但し、y(t) が近似的に求めたい未知関数であり、その t における勾配は f(t, y) によって t 及び y(t) の関数として与えられている。時刻 t0 における初期値は y0 で与えられている。 今、時刻 tn における値 yn = y(tn) が

  • マルコフ連鎖 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "マルコフ連鎖" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2018年1月) マルコフ連鎖(マルコフれんさ、英: Markov chain)とは、確率過程の一種であるマルコフ過程のうち、とりうる状態が離散的(有限または可算)なもの(離散状態マルコフ過程)をいう。また特に、時間が離散的なもの(時刻は添え字で表される)を指すことが多い[注釈 1]。マルコフ連鎖は、未来の挙動が現在の値だけで決定され、過去の挙動と無関係である(マルコフ性)。各時刻において起こる状態変化(遷移または推移)に関して、マルコフ連鎖は遷移確率が過去の状態によらず、

  • バックプロパゲーション - Wikipedia

    バックプロパゲーション(英: Backpropagation)または誤差逆伝播法(ごさぎゃくでんぱほう)[1]はニューラルネットワークの学習アルゴリズムである[2]。 概要[編集] バックプロパゲーションは数理モデルであるニューラルネットワークの重みを層の数に関わらず更新できる(学習できる)アルゴリズムである。ディープラーニングの主な学習手法として利用される。 そのアルゴリズムは次の通りである: ニューラルネットワークに学習のためのサンプルを与える。 ネットワークの出力を求め、出力層における誤差を求める。その誤差を用い、各出力ニューロンについて誤差を計算する。 個々のニューロンの期待される出力値と倍率 (scaling factor)、要求された出力と実際の出力の差を計算する。これを局所誤差と言う。 各ニューロンの重みを局所誤差が小さくなるよう調整する。 より大きな重みで接続された前段のニ

    バックプロパゲーション - Wikipedia
  • フラクタル - Wikipedia

    この項目では、幾何学の概念について説明しています。テレビアニメについては「フラクタル (テレビアニメ)」を、榊原ゆいのアルバムについては「Fractal」を、日の持株会社については「FRACTALE」をご覧ください。 フラクタルの例(マンデルブロ集合) フラクタル(仏: fractale, 英: fractal)は、フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念である。ラテン語の fractus から。図形の部分と全体が自己相似(再帰)になっているものなどをいう。なお、マンデルブロが導入する以前から以下で述べるような性質を持つ形状などはよく考えられてきたものであり、また、そういった図形の一つである高木曲線は幾何ではなく解析学上の興味によるものである。 定義[編集] コッホ雪片の作成 フラクタルの特徴は直感的には理解できるものの、数学的に厳密に定義するのは非常に難しい。マンデル

    フラクタル - Wikipedia
  • 隠れマルコフモデル - Wikipedia

    隠れマルコフモデル(かくれマルコフモデル、英: hidden Markov model; HMM)は、確率モデルのひとつであり、観測されない(隠れた)状態をもつマルコフ過程である。 概要[編集] 同じマルコフ過程でも、隠れマルコフモデルより単純なマルコフ連鎖では、状態は直接観測可能であり、そのため、状態の遷移確率のみがパラメータである。一方、隠れマルコフモデルにおいては、状態は直接観測されず、出力(事象)のみが観測される。ただしこの出力は、モデルの状態による確率分布である。従って、ある隠れマルコフモデルによって生成された出力の系列は、内部の状態の系列に関する何らかの情報を与えるものとなる。「隠れ」という語はモデルが遷移した状態系列が外部から直接観測されないことを指しており、モデルのパラメータについてのものではない。たとえパラメータが既知であっても隠れマルコフモデルと呼ばれる。隠れマルコフモ

    隠れマルコフモデル - Wikipedia
  • ゲーム理論 2016年9月25日 (日) 18:37; Munasca (会話 | 投稿記録) による版( - Wikipedia

    協力ゲームと非協力ゲームの区別はジョン・ナッシュが1951年に発表した「非協力ゲーム[33]」という論文の中で初めて定義された[34][35][36]。ナッシュの定義によれば、協力ゲームにおいてプレイヤー間のコミュニケーションが可能でありその結果生じた合意が拘束力を持つのに対して、非協力ゲームにおいてはプレイヤーがコミュニケーションをとることが出来ず合意は拘束力を持たない[34]。このように当初はプレイヤー間のコミュニケーションと拘束力のある合意(英: enforceable agreement)の有無によって協力ゲームと非協力ゲームとが区別されていたが、非協力ゲームの研究が進展するにつれてこのような区別は不十分なものとなった。すなわち、1970年代に非協力ゲームを「展開形ゲーム」で表現する理論が発達したことによって、非協力ゲームにおけるプレイヤー間のコミュニケーションが情報集合として記述

    ゲーム理論 2016年9月25日 (日) 18:37; Munasca (会話 | 投稿記録) による版( - Wikipedia
  • モンテカルロ法 - Wikipedia

    モンテカルロ法(モンテカルロほう、(英: Monte Carlo method、MC)とはシミュレーションや数値計算を乱数を用いて行う手法の総称。元々は、中性子が物質中を動き回る様子を探るためにスタニスワフ・ウラムが考案しジョン・フォン・ノイマンにより命名された手法。カジノで有名な国家モナコ公国の4つの地区(カルティ)の1つであるモンテカルロから名付けられた。ランダム法とも呼ばれる。 計算理論[編集] 計算理論の分野において、モンテカルロ法とは誤答する確率の上界が与えられる乱択アルゴリズム(ランダム・アルゴリズム)と定義される[1]。一例として素数判定問題におけるミラー-ラビン素数判定法がある。このアルゴリズムは与えられた数値が素数の場合は確実に Yes と答えるが、合成数の場合は非常に少ない確率ではあるが No と答えるべきところを Yes と答える場合がある。一般にモンテカルロ法は独立

    モンテカルロ法 - Wikipedia
  • ロマネスコ - Wikipedia

    フラクタル形状 ロマネスコ(伊: Broccolo Romanesco)はアブラナ科アブラナ属の一年生植物。カリフラワーの一種である。フラクタル形態のつぼみが特徴の野菜である。 概要[編集] 日でのロマネスコという名前は、イタリア語での呼び名である Broccolo Romanesco(ブロッコロ・ロマネスコ、ローマのブロッコリーの意)に由来する。未成熟のつぼみと花梗を用にし、アブラナ科の野菜の中では比較的穏やかで微かに甘い芳香を放つ。花蕾群の配列がフラクタル形状を示す特徴を持つ。 16世紀にローマ近郊で開発されたとされているが[1]、これには異論もあり、ドイツでも同時期から栽培の記録がある。 色は黄緑色(クリーム色から緑色の中間色)で、姿はブロッコリーに近く背が高めで葉は展開する。一方、頂花蕾のみで側枝は発達せずカリフラワーの性質を示す。味はブロッコリーに近く、感はカリフラワーに近

    ロマネスコ - Wikipedia
  • マンデルブロ集合 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "マンデルブロ集合" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2015年3月) 左上:場所 a の拡大図,右上:場所 b の拡大図,左下:場所 c の拡大図,右下:全体図 次の漸化式 で定義される複素数列 {zn}n∈N∪{0} が n → ∞ の極限で無限大に発散しないという条件を満たす複素数 c 全体が作る集合がマンデルブロ集合である[1]。 複素数 c を複素平面上の点として(あるいは同じことだが c = a + ib と表して c を xy-平面上の点 (a, b) として)表すと、この平面上でマンデルブロ集合はフラクタル

    マンデルブロ集合 - Wikipedia
  • カオス理論 - Wikipedia

    カオス性を持つローレンツ方程式の解軌道 カオス理論(カオスりろん、英: chaos theory、独: Chaosforschung、仏: théorie du chaos)とは、力学系の一部に見られる、数的誤差により予測できないとされている複雑な様子を示す現象を扱う理論である。カオス力学ともいう[1][2]。 ここで言う予測できないとは、決してランダムということではない。その振る舞いは決定論的法則に従うものの、積分法による解が得られないため、その未来(および過去)の振る舞いを知るには数値解析を用いざるを得ない。しかし、初期値鋭敏性ゆえに、ある時点における無限の精度の情報が必要であるうえ、(コンピューターでは無限桁を扱えないため必然的に発生する)数値解析の過程での誤差によっても、得られる値と真の値とのずれが増幅される。そのため予測が事実上不可能という意味である。 ある初期状態が与えられれば

    カオス理論 - Wikipedia
  • Wikipedia (JP) - フーリエ変換(Fourier transform)

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "フーリエ変換" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2013年2月) 上は時間領域で表現された矩形関数f(t)(左)と、周波数領域で表現されたそのフーリエ変換f̂(ω)(右)。f̂(ω)はSinc関数である。下は時間遅れのある矩形関数 g(t) と、そのフーリエ変換 ĝ(ω)。 時間領域における平行移動 (ディレイ)は、周波数領域では虚数部の位相シフトとして表現される。 数学においてフーリエ変換(フーリエへんかん、英: Fourier transform、FT)は、実変数の複素または実数値関数を、別の同種の関数fに写す変換で

    Wikipedia (JP) - フーリエ変換(Fourier transform)
  • 1