#概要 SVM(Support Vector Machine)は分類精度の高い機械学習の手法として知られています. SVMでより高い分類精度を得るには, ハイパーパラメータを訓練データから決定する必要があります. この記事では, RBFカーネル(Gaussian カーネル)を用いたSVMのハイパーパラメータを調整することで, 決定境界がどのように変化するのかを解説します. #決めるべきハイパーパラメータ RBFカーネルを用いたSVMでは, 以下の2つのハイパーパラメータを調整します. コストパラメータ: $C$ RBFカーネルのパラメータ: $\gamma$ コストパラメータについて SVMは特徴空間に写像されたデータ点集合を分離する超平面を決定する手法です. しかし, 特徴空間上の点集合がいつも分離可能とは限りません. 例えば, 以下の図では二種類の記号を完璧に分割するような直線を引くこ