You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
今回は画像特徴量の1つである高次局所自己相関特徴 (HLAC: Higher-order Local AutoCorrelation)について。 HLACは画像認識に対する基本的な要望としての位置不変性および加法性を満たすものであり、一次にとどまらない高次の相関に基づく統計的特徴量になっています。現在では様々なHLACの発展系が生まれていますが、今回はその基本となるアルゴリズムについて整理したいと思います。 基本アルゴリズム 自己相関関数を高次に拡張したN次の自己相関関数は、対象となる画像領域内の位置 r=(x, y) における画素値を f(r) とすると、その周りのN個の変位 a1, a2, …, aN に対して次式で定義されます。 基本的なHLAC特徴はこの関数に基づいた画像特徴で、実際には相関の次数を二次まで(3点相関)、変位も局所領域(3×3など)に限定して利用します。そのため変位
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く