タグ

Wikipediaと科学に関するa96nekoのブックマーク (11)

  • 磁性 - Wikipedia

    物理学において磁性(じせい、英: magnetism)とは、物質が原子あるいは原子よりも小さいレベルで磁場に反応する性質であり、他の物質に対して引力や斥力を及ぼす性質の一つである。磁気(じき)とも言う。 概要[編集] 磁性は様々に分類がなされている。例えば、磁性の分類の中では強磁性がよく知られているが、強磁性を持つ物質は自ら持続的な磁場を生み出し得る。また、電流などによっても磁場は発生する。ところで、あらゆる物質は程度の差こそあれ、磁場によって何らかの影響を受ける。磁場に引き付けられる物質もあれば(常磁性)、磁場に反発する物質もある(反磁性)。さらに、磁場と複雑な関係を有する物質もある。しかも、ある物質の磁性状態(または相)は、温度(あるいは圧力や周囲の磁場)に依存するため、1つの物質であっても温度などの条件によって様々な磁性を示すことがある。ただし、ほとんどの場合、磁場によって物質が受け

    磁性 - Wikipedia
  • 電磁場 - Wikipedia

    電磁場(でんじば, 英語: electromagnetic field, EMF)、あるいは電磁界(でんじかい)は、電場(電界)と磁場(磁界)の総称[1]。 電場と磁場は時間的に変化しないような静的な場合を除いて必ず同時に存在し、マクスウェル方程式で関連づけられる[1]。電場、磁場が時間的に一定で 0 でない場合、それぞれは分離され、静電場、静磁場として別々に扱われる。 電磁場の変動が波動として空間中を伝播するとき、これを電磁波という。 概念[編集] 電磁場という用語を単なる概念として用いる場合と、物理量として用いる場合がある。 概念として用いる場合は、電場の強度と電束密度、あるいは磁場の強度と磁束密度を明確に区別せずに用いるが、物理量として用いる場合は電場の強度と磁束密度の組であることが多い。 また、これらの物理量は電磁ポテンシャルによっても記述され、ラグランジュ形式などで扱う場合は電磁

    電磁場 - Wikipedia
  • 電荷保存則 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "電荷保存則" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2011年7月) 電荷保存則(でんかほぞんそく、英: Charge conservation)とは、孤立系における電荷(電気量)の総量は恒久に変わらないという法則である。電気量保存則ともいう。 概要[編集] 電荷が化学反応から原子核反応、粒子の崩壊や対生成・対消滅に至るまで、現在確認されている全ての反応で保存しており、今までに反例が見つかっていないという経験的事実から導出された[疑問点 – ノート]法則である。 また、より広義では電磁気学の電荷(電気量)にとどまらず、物理学で扱う

  • 臨界前核実験 - Wikipedia

    臨界前核実験の装置(ネバダ核実験場) 臨界前核実験が行われるU1a複合施設の外観(ネバダ核実験場) 臨界前核実験(りんかいまえかくじっけん、りんかいぜんかくじっけん、英: subcritical experiment)あるいは未臨界核実験(みりんかいかくじっけん)は、核物質を臨界状態に至らない条件に設定して行う核実験。核兵器の新たな開発や性能維持のために行われる。アメリカ合衆国やロシアやパキスタン[要出典]など、過去の核実験のデータを蓄積した核保有国において行われている。 核物質の高性能爆薬による爆破・圧縮や大出力レーザーの照射によって行われ、主に物性変化を観察することが目的である。実験結果はコンピュータ・シミュレーションの基礎データなどに利用される。核物質が臨界に達する前の段階で実験は終了するため、通常の核実験で起こるような、閃光・熱・爆風を伴う核爆発は発生せず、環境に対する汚染もない。

    臨界前核実験 - Wikipedia
  • ガリウム - Wikipedia

    ガリウム (英: gallium [ˈɡæliəm]) は原子番号31の元素で、元素記号は Ga である。ホウ素、アルミニウムなどと同じ第13族元素に属する。 名称[編集] 命名には2つの説がある。一つは、ガリウムの発見者であるボアボードランがこの新しい元素を母国フランスのラテン名「ガリア (Gallia)」にちなんでガリウムと命名したとする説、もう一つはボアボードランのミドルネームである "Lecoq" から関連付けて、フランス語で雄鶏を意味する "le coq" のラテン語である gallus から付けられたとする説である(後者は1877年に人によって否定されている)[1]。 歴史[編集] ガリウムを発見したポール・エミール・ルコック・デ・ボアボードラン ドミトリ・メンデレーエフが1870年に周期表を発表した際、「エカ=アルミニウム (eka-alminium)」として予言した元素で

    ガリウム - Wikipedia
    a96neko
    a96neko 2011/11/21
    人体への毒性は少ない
  • 軌道エレベータ - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "軌道エレベータ" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2013年9月) NASAによる軌道エレベーター想像図 軌道エレベータ(きどうエレベータ、英: space elevator)は、惑星などの表面から静止軌道以上まで伸びる軌道を持つエレベータの構想である。宇宙エレベータとも呼ばれる。 実現した場合、宇宙空間への有利な進出手段として構想されている。カーボンナノチューブの発見後、現状の技術レベルでも手の届きそうな範囲にあることから実現に向けた研究プロジェクトが日アメリカで始まっている。 概要[編集] 軌道エレベータの概念図 軌

    軌道エレベータ - Wikipedia
  • スターリングエンジン - Wikipedia

    スターリングエンジン(英: Stirling engine)とは、熱機関の形式のひとつで、シリンダー内のガス(もしくは空気等)を外部から加熱・冷却し、その体積の変化(加熱による膨張・冷却による収縮)により仕事を得る外燃機関である[1]。熱交換をすることによってカルノーサイクルと同じ理論熱効率となる。スコットランドの牧師、ロバート・スターリングが1816年に発明し、名称はこれに由来する。[2] 概要[編集] 実際のエンジンではこのように高温部と低温部を分離した機構が用いられる スターリングエンジンは、理想的にはカルノーサイクルを実現する熱機関である。存在しうる熱機関の中で最も高い効率で熱エネルギーを仕事に変換できる可能性がある。熱エネルギーを仕事(力学的エネルギー)に変換する効率はカルノーサイクルを超える事は出来ず、現実的にはカルノーサイクルに等しい熱効率を実現することはできないが、スターリ

    スターリングエンジン - Wikipedia
  • DHMO - Wikipedia

    DHMOの分子模型。 DHMO(ディー・エイチ・エム・オー、英: dihydrogen monoxide)とは、化学式 H2O で表される水素と酸素の化合物であり、日語で表現すれば一酸化二水素、すなわち水そのものを、IUPAC命名法により言い換えたものである。 これは水であることを敢えて分かりにくくして危険な化学物質であるかのように錯覚させるため、元素の構成に基づく化合物名として表現したものである。科学論文などでこの表現が使われることはまずなく、心理実験や科学ジョーク[1]のひとつとして使われる。 概要[編集] DHMOのジョークが初めて登場したのは、Durand Express(英語版)紙が1983年に掲載したエイプリルフール記事であったという。その中では、DHMOは「水道管で発見された」「気化ガスを吸い込むと水ぶくれができる」[注釈 1]というシンプルな説明のみがなされ、記事の末尾に

    DHMO - Wikipedia
    a96neko
    a96neko 2011/03/24
    一酸化二水素。通称「水」
  • タコマナローズ橋 - Wikipedia

    タコマナローズ橋、1950年の再建後のもの 初代タコマナローズ橋の開通式(1940年7月)。1950年再建の橋(上の写真)に比べると幅が狭かったことがわかる タコマナローズ橋(タコマナローズきょう、Tacoma Narrows Bridge:タコマ橋)はアメリカ合衆国ワシントン州ピュージェット湾口の海峡タコマナローズ (Tacoma Narrows) に架かる吊橋である。 初代の橋は設計上の問題により、架橋後間もない1940年11月7日、予想に満たない強風の影響で落橋した[2]。なお、しばしば共振現象による破滅的な現象の例として言及されるが、共振であるとするのは誤解であると専門家によって度々指摘されている[3]。 沿革[編集] 初代タコマナローズ橋は1940年7月1日に開通した有料道路橋であり、全長 1600メートル、吊径間 853メートル、幅員 11.9メートルを有していた。 太平洋側有

    タコマナローズ橋 - Wikipedia
  • 物質・材料研究機構 - Wikipedia

    次世代環境再生材料の研究開発 / 先端超伝導材料に関する研究 / 高性能発電・蓄電用材料の研究開発 / 次世代太陽電池の研究開発 / 元素戦略に基づく先進材料技術の研究 / エネルギー関連構造材料の信頼性評価技術の研究開発 / 低炭素化社会を実現する耐熱・耐環境材料の開発 / 軽量・高信頼性ハイブリッド材料の研究開発 / ワイドバンドギャップ光・電子材料の研究開発 / 省エネ磁性材料の研究開発 / 先端材料計測技術の開発と応用 / 新物質設計シミュレーション手法の研究開発 / 革新的光材料技術の開発と応用 / 新材料創出を可能にする粒子プロセスの開発と応用 / 有機分子ネットワークによる材料創製技術 / システム・ナノテクノロジーによる材料の機能創出 / ケミカル・ナノテクノロジーによる新材料・新機能の創出 / ナノエレクトロニクスのための新材料・新機能の創製 / ナノバイオテクノロジー

    物質・材料研究機構 - Wikipedia
  • 火山雷 - Wikipedia

    インドネシア・ガルングン山の噴火で発生した火山雷(1982年) 火山雷(かざんらい、Volcanic lightning、Dirty thunderstorm)とは、火山噴火によってもたらされる雷のことである。この雷は、火山という条件上とても近づきにくい条件で発生するため、詳しい諸量の観測はしにくい。 発生メカニズム[編集] 火山が噴き上げる水蒸気、火山灰、火山岩などの摩擦電気により生じる。また、水蒸気が少ない場合でも発生できる。 しかしながら流動性の高い高温なパホイホイ溶岩などの溶岩を吹き上げる火山の場合は、高温な溶岩が電気を通しやすい性質上、雷はほとんど発生しない。また、火山灰、火山岩などの固体による摩擦電気がもたらす雷であるので、通常の雷よりも静電エネルギー量は一般的に高いとされている。阿蘇山での観測結果では粒子が細かいと発生しやすいとする報告がある[1]。 桜島で噴火と火山雷には一

    火山雷 - Wikipedia
    a96neko
    a96neko 2011/01/27
    通常の雷よりもエネルギーが高い
  • 1