IBM Developer is your one-stop location for getting hands-on training and learning in-demand skills on relevant technologies such as generative AI, data science, AI, and open source.

大規模な分散処理フレームワークとしてHadoopが登場したことにより、ビッグデータのブームや、大規模なソーシャルゲームでのログ解析による改善、コマースサイトでの機械学習によるレコメンデーションなど、多くの変化が引き起こされてきました。そしてそのHadoop自体も、日々進化し続けています。Hadoopとはどういうソフトウェアであり、いまどのような状況になっているのか。NTTデータの濱野賢一朗氏が、先日行われた第2回 NHNテクノロジーカンファレンスで行ったセッション「日々進化するHadoopの『いま』」で分かりやすく解説しています。この記事ではそのセッションの内容をダイジェストで紹介しましょう。 日々進化するHadoopの「いま」 NTTデータ 基盤システム事業部 濱野賢一朗氏。 NTTデータというところで仕事をしています。NTTデータ自体はもう5年くらいHadoopをやってまして、そこで2
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Hadoopに関する基本的な内容をまとめてみたものです。Hadoopに関する、Web上にすでにある解説コンテンツをまとめたサイトの抜粋です。 [Hadoopとは] (https://www.techcrowd.jp/bigdata/hadoop/) [Hadoopの概要] (https://www.techcrowd.jp/bigdata/hadoop/) Hadoopは、 ・テキスト ・画像 ・ログ などの構造化されていないデータを、高速に処理出来るオープンソースのプラットフォームです。 Hadoopは大規模なデータの処理に適している
Hadoopの時代は終わった、という言説をたまに見かけるようになりました。 もちろん終わってなどいません。しかし、Hadoopとその取り巻く環境が変化したのは事実です。 本記事では、この変化が何なのかを明らかにし、その上で、なぜHadoopの時代は終わったという主張が実態を正しく表していないのかを説明していきます。 DISCLAIMER 私はHadoopを中心としたデータ基盤を取り扱うベンダー、Clouderaの社員です。 中立的に書くよう努めますが、所属組織によって発生するバイアスの完全な排除を保証することはできません。 以上をご了承の上、読み進めてください。 要約 データ基盤は、Hadoopの登場により非常に安価となり、今まででは不可能だった大量のデータを取り扱えるようになりました。 Hadoopは、NoSQLブームの中、処理エンジンであるMapReduceとストレージであるHDFSが
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く