タグ

ブックマーク / www.ajimatics.com (3)

  • 「2乗してはじめて0になる数」とかあったら面白くないですか?ですよね - アジマティクス

    「その数自体は0でないのに、2乗するとはじめて0になる数」ってなんですか? そんな数あるはずがないと思いますか? でももしそんな数を考えることができるなら、ちょっとワクワクすると思いませんか? 今回はそんな謎の数のお話。 実数の中には、「2乗して0になる数」というのは0しかありません。 (2乗して0になる実数は0しかない図) ということは、「2乗してはじめて0になる数」というのがあるとしたら、それは実数ではありえません。 「1年A組にはメガネの人はいないので、メガネの人がいたとしたらその人は1年A組ではありえない」くらいの当たり前のことを言っています。 この辺の議論は、複素数で「」を導入したときと同じですね。 「実数の中には、2乗して-1になる数というのは存在しないので、それがあるとしたら実数ではありえない」ということで「虚数」であるが導入されるわけです。 それならばということで、ここでは

    「2乗してはじめて0になる数」とかあったら面白くないですか?ですよね - アジマティクス
    arvante
    arvante 2021/03/23
    面白かった。
  • 無限べき乗a^a^a^...の収束と発散との境目が気になる - アジマティクス

    一般に、境目は大事です。どこまでが友人で、どこからが恋人なのか、とか。 この記事は「好きな証明」アドベントカレンダー1日目の記事です。 上記の式のことを考えます。今回はは正の実数とします。そのが無限に乗じられているわけです。一見面らってしまう見た目をしていますが、という列の極限として捉えられる、と考えればそこまで異常な概念でもないと思います。あるいは、この式全体を「」とでも置けば与式はと閉じた見た目にできるので怖くないです。(※極限値があると仮定) さて、当然のこととして、に値を入れてみたときにこの式がどう振る舞うのか知りたくなるのが人情です。とりあえず試しにだとしてみましょう。これはすなわち「」のことなわけですが、これはまあ1を何回乗じても1なのでも1になると予想がつくでしょう。 今度はだとしてみます。という数列は、実際に計算するととなり、明らかに発散(いくらでも大きくなる)しそうな雰

    無限べき乗a^a^a^...の収束と発散との境目が気になる - アジマティクス
  • "独創的すぎる証明"「ABC予想」をその主張だけでも理解する - アジマティクス

    2017年12月16日、数学界に激震が走りました。……というと少し語弊があるでしょうか。 この日、あの「フェルマーの最終定理」に匹敵するとも言われる数学の重要な予想、つまり未解決問題であった「ABC予想」が京都大数理解析研究所の望月新一氏によってついに解決されたというニュースが、数学界を、いや、世界中を駆け巡ったのです。 science.srad.jp とは言っても実は、ABC予想を証明したとする論文は2012年にすでに発表されていて、そこから5年間ずっと「査読中」、つまりその証明が正しいかどうかの検証中だったのです(5年もかかったというのは、それだけこの証明が独創的で難解だったことの証左でもあります)。 端から見ていた所感として、論文が出た当初は、当にこれがABC予想の証明になっているのか疑う向きも多かったようですが、最近では、証明はほぼ間違いないのだろう、というような雰囲気だったよう

    "独創的すぎる証明"「ABC予想」をその主張だけでも理解する - アジマティクス
  • 1