タグ

数学に関するastrocyteのブックマーク (6)

  • 「 2 」か「 9 」で割ってみる - ナイトシフト

    先日、飲んでたときに「 9 」という数字が面白いというになったのですが、「 数字が合わないときに『 9 』で割ったりするよね。 」と言ったら誰もやってなかったのでその話をします。たぶん、会計に携わってる人なら知ってる人も多いはず。 例えば、経理の仕事をしてたりすると、仕訳を全部入力したのに帳簿の残高と実際の預金残高が合わないということがあると思います。会計の仕事をしていない人でも、家計簿ソフトを使ってて、レシートを全部入力したのに現金の残高が合わないなんていうことがあるんじゃないでしょうか。そんなときは闇雲に間違いを探しはじめないで、とりあえず差額を「 2 」か「 9 」で割ってみるといいかもしれません。割り切れると↓こんな可能性が考えられます。 「 2 」で割り切れる → ±を逆に入力してる可能性がある「 9 」で割り切れる → 桁間違い or 数字の一部を逆に入力してる可能性がある  

  • サンクトペテルブルクのパラドックス - Wikipedia

    ダニエル・ベルヌーイ サンクトペテルブルクのパラドックス (St. Petersburg paradox) は、意思決定理論におけるパラドックスの一つである。極めて少ない確率で極めて大きな利益が得られるような事例では、期待値が発散する場合があるが、このようなときに生まれる逆説である。サンクトペテルブルクの賭け、サンクトペテルブルクの問題などとも呼ばれる。「サンクトペテルブルク」の部分は表記に揺れがある。 1738年、サンクトペテルブルクに住んでいたダニエル・ベルヌーイが、学術雑誌『ペテルブルク帝国アカデミー論集』の論文「リスクの測定に関する新しい理論」で発表した。その目的は、期待値による古典的な「公平さ」が現実には必ずしも適用できないことを示し、「効用」(ラテン語: emolumentum)についての新しい理論を展開することであった。 偏りのないコイン[注釈 1]を表が出るまで投げ続け、表

    サンクトペテルブルクのパラドックス - Wikipedia
  • 統計学基礎/確率 - Wikibooks

    確率という言葉は, 今日ではいろいろな場面で使われる. 降水確率や, 合格確率, 事故の起きる確率, 宝くじの当選確率などその使われ方は多岐に渡る. 大抵の場合確率何%(パーセント)というように, パーセント表示されるが, %とは来per centつまり100あたりいくらか?という値を示す記号である. 例えば, 降水確率で考えてみると, 降水確率40%とは, 同じような天気図になった日が100日あったとしたら, その内40日は雨が降るということになる. 100日あたり40日ということは, 1日あたり 40/100=0. 4 の割合で起きていることになる. 必ず雨が降ると言われている100%であれば, 100÷100=1の割合で起きるということで, 必ず降らないと言われる0%であれば, 0÷100=0 の割合で起きるという予測になる. つまり確率というのは0から1までの値を取る. 確率とい

  • 『なぜ2時から5時までは3時間で、2日から5日までは4日間なのか?』

    (補注:このアーティクルの論考は、『かけ算には順序があるのか』岩波科学ライブラリーの第3章で整理されました。) http://www.iwanami.co.jp/.BOOKS/02/2/0295800.html 子どものとき疑問だったこの問題は、塾で教えるようになってから、数教協の(特に遠山啓の)を読んで、分離量・連続量という考え方を知って、氷解しました。私にとっては、数教協で目からウロコシリーズのベストスリーに入るものでしょう。ところが、mixiで発言したところ、なかなか同意を得られなかった。それ自体が、私にとって、新たな目からウロコシリーズでもありました。 http://mixi.jp/view_bbs.pl?id=42139232&comment_count=306&comm_id=63370 233番発言以降。 さて、 A:「2時から5時までは3時間。」 B:「2日から5日まで

    『なぜ2時から5時までは3時間で、2日から5日までは4日間なのか?』
  • 良い乱数・悪い乱数

    C言語標準ライブラリの乱数rand( )は質に問題があり、禁止している学会もある。 他にも乱数には様々なアルゴリズムがあるが、多くのものが問題を持っている。 最も多くの人に使われている乱数であろう Visual Basic の Rnd の質は最低である。 そもそも乱数とは 乱数とは、来サイコロを振って出る目から得られるような数を意味する。 このような乱数は予測不能なものである。 しかし、計算機を使って乱数を発生させた場合、 次に出る数は完全に決まっているので、予測不能とはいえない。 そこで、計算機で作り出される乱数を疑似乱数(PRNG)と呼び区別することがある。 ここでは、特にことわらない限り乱数とは疑似乱数のことを指すとする。 計算機でソフト的に乱数を発生させることの最大のメリットは、 再現性があることである。 初期状態が同じであれば、発生する乱数も全く同じものが得られる。 このことは

  • 「ウルフラム氏のチューリングマシン」を20歳の学生が証明 | WIRED VISION

    「ウルフラム氏のチューリングマシン」を20歳の学生が証明 2007年10月26日 サイエンス・テクノロジー コメント: トラックバック (0) Brandon Keim 2007年10月26日 複雑系理論の権威であるStephen Wolfram氏が、あるチューリングマシンを提案し、これが考えられるありとあらゆる計算問題を解く能力を持つ、考え得る限りで最も単純なコンピューターであることを証明するよう呼びかけた。 それからわずか47日後、イギリスのバーミンガム大学コンピューター科学部の学生Alex Smithさん(20歳)が、見事にこれを証明して見せた。 チューリングマシンは、コンピューターの世界に偉大な貢献をした数学者、アラン・チューリングが1936年に提案したものだ。 今ではハードウェアをソフトウェアと切り離すことは当たり前になっているが、チューリングはこれを理論として考え出した最初の1

  • 1