同様の構成は一般の素数 p に対しても成り立つ。整数環 Z の p の倍数全体 pZ は素イデアルで、整数環がPIDなので、特に極大イデアル。したがって剰余環 Fp = Z/pZ は p 個の元からなる体である。 素数位数とは限らない有限体も存在する。F2 係数一変数多項式環 F2[x] を考える。その既約多項式 f(x) = x2 + x + 1 の生成する素イデアル (f(x)) は、 F2[x] がPIDなので、特に極大イデアル。したがって剰余環 F4 = F2[x]/(f(x)) は 4 個の元からなる体である。変数 x の自然な全射による像を ω とおくと、F4 = {0, 1, ω, ω2} と表せ、その演算は関係式 ω2 + ω + 1 = 0 から定まる。 同様の構成は一般の素数 p に対して成り立ち、任意の拡大次数 d をもつ拡大体が構成できる。そのとき次数 d の既約多