タグ

研究とclusteringに関するbasiのブックマーク (3)

  • 軽量データクラスタリングツールbayon - mixi engineer blog

    逆転検事を先日クリアして、久しぶりに逆転裁判1〜3をやり直そうか迷い中のfujisawaです。シンプルなデータクラスタリングツールを作成しましたので、そのご紹介をさせていただきます。 クラスタリングとは クラスタリングとは、対象のデータ集合中で似ているもの同士をまとめて、いくつかのグループにデータ集合を分割することです。データマイニングや統計分析などでよく利用され、データ集合の傾向を調べたいときなどに役に立ちます。 例えば下図の例ですと、当初はデータがゴチャゴチャと混ざっていてよく分からなかったのですが、クラスタリングすることで、実際は3つのグループのデータのみから構成されていることが分かります。 様々なクラスタリング手法がこれまでに提案されていますが、有名なところではK-means法などが挙げられます。ここでは詳細については触れませんが、クラスタリングについてより詳しく知りたい方は以下の

    軽量データクラスタリングツールbayon - mixi engineer blog
  • HAC に使える feature selection を試す (nakatani @ cybozu labs)

    プチ間空きましたが、「IIR の「効果的な」階層的クラスタリング」の続き。 「次回は feature selection で次元を落とすのを試してみるべき」と書いたとおり、feature selection(特徴選択)を行ってみます。 要は「25文書しかないのに 8000 語とか多すぎる。文書増えてったらガクブル。よし減らそう。全部必要な訳ないしね。でも、どうやって?」という話です。 IIR では、Chapter 13 にて feature selection を扱っており、 また Chapter 18 では LSI(latent semantic indexing)、乱暴に言えば固有ベクトルを求めることでその空間が来持っている次元数(階数)を導いている。 しかし、Ch.13 の内容は Bayesian のような「教師有り分類」の場合の feature selection しかカバーして

  • IIR の「効果的な」階層的クラスタリング (nakatani @ cybozu labs)

    IR の階層的クラスタリングを試すの続きです。 "efficient" な HAC(hiererachical agglomerative clustering) を実装してみます。 今回は、コード全体をぺたぺた貼り付けるのも見にくいし面倒だしということで、github に置いてみました。 git://github.com/shuyo/iir.git 前回作った corpus パックも commit してありますので、 clone すればいきなり動く、はず。 git clone git://github.com/shuyo/iir.git cd iir/hac ruby hac.rb 4million.corpus おのおの手元でちょこちょこ改変して試してみるには CodeRepos より git の方が向いてるんじゃあないかなあと思ったんですが、git まだ使いこなせてないのでなんか色々

  • 1