タグ

algorithmとアルゴリズムに関するbasiのブックマーク (13)

  • 「最強最速アルゴリズマー養成講座」関連の最新 ニュース・レビュー・解説 記事 まとめ - ITmedia Keywords

    最強最速アルゴリズマー養成講座: そのアルゴリズム、貪欲につき――貪欲法のススメ アルゴリズムの世界において、欲張りであることはときに有利に働くことがあります。今回は、貪欲法と呼ばれるアルゴリズムを紹介しながら、ハードな問題に挑戦してみましょう。このアルゴリズムが使えるかどうかの見極めができるようになれば、あなたの論理的思考力はかなりのレベルなのです。(2010/9/4) 最強最速アルゴリズマー養成講座: 病みつきになる「動的計画法」、その深淵に迫る 数回にわたって動的計画法・メモ化再帰について解説してきましたが、今回は実践編として、ナップサック問題への挑戦を足がかりに、その長所と短所の紹介、理解度チェックシートなどを用意しました。特に、動的計画法について深く掘り下げ、皆さんを動的計画法マスターの道にご案内します。(2010/5/15) 最強最速アルゴリズマー養成講座: アルゴリズマーの登

  • 転置インデックスを実装しよう - mixi engineer blog

    相対性理論のボーカルが頭から離れないmikioです。熱いわっふるの声に応えて今回はTokyo Cabinetのテーブルデータベースにおける検索機能の実装について語ってみたいと思います。とても長いのですが、最後まで読んだあかつきには、自分でも全文検索エンジンを作れると思っていただければ嬉しいです。 デモ モチベーションをあげていただくために、100行のソースコードで検索UIのデモを作ってみました。Java 6の日語文書を対象としているので、「stringbuffer」とか「コンパイル」とか「倍精度浮動小数」とかそれっぽい用語で検索してみてください。 インデックスがちゃんとできていれば、たった100行で某検索エンジン風味の検索機能をあなたのデータを対象にして動かすことができます。ソースコードはこちら(テンプレートはこちら)です。 でも、今回はUIの話ではないのです。ものすごく地味に、全文検索

    転置インデックスを実装しよう - mixi engineer blog
  • ジャンル別ゲームの作り方とアルゴリズムまとめ - ネットサービス研究室

    ゲームの作り方とアルゴリズムをジャンル別にまとめてみました。ゲーム制作や、プログラミングの勉強用にご活用ください。言語別ゲームプログラミング制作講座一覧もあわせてお読みください。 リンク切れがおきていたものは、URLを表示しておくので、Internet Archiveなどでキャッシュを表示させてみてください。 RPG ゲームの乱数解析 乱数を利用した敵出現アルゴリズムの解説 各種ゲームプログラム解析 FF、ドラクエ、ロマサガのプログラムの解析。乱数の計算など ダメージ計算あれこれ(http://ysfactory.nobody.jp/ys/prg/calculation_public.html) ダメージの計算式 エンカウントについて考えてみる エンカウント(マップでの敵との遭遇)の処理方法いろいろ RPGの作り方 - ゲームヘル2000 RPGのアルゴリズム ドルアーガの塔 乱数の工夫の

    ジャンル別ゲームの作り方とアルゴリズムまとめ - ネットサービス研究室
  • アルゴリズムの紹介

    ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 こんなことやって意味あるのかどうか正直言って迷いました。プログラマはたいてい知っているような内容だし見る人もいないんじゃないかと思いましたが、これからプログラミングを始めてみようという方にとっては参考になるかもしれないし、何よりも自分にとって頭の中を整理できたりするので、これから定期的にやっていこうかと考えてます。 ところで、紹介する内容はほとんど過去に出版された書物関係から抜粋しています。一応下の方に参考文献として挙げておきますので興味を持たれた方は書店などで探してみてはいかがでしょうか? ということで、まずはライン・ルーチン(画面に直線を描画する)についての紹介です。

  • クラスカルのアルゴリズム - naoyaのはてなダイアリー

    昨年からはじめたアルゴリズムイントロダクションの輪講も終盤に差し掛かり、残すところ数章となりました。今週は第23章の最小全域木でした。辺に重みのあるグラフで全域木を張るとき、その全域木を構成する辺の合計コストが最小の組み合わせが最小全域木です。 アルゴリズムイントロダクションでは、クラスカルのアルゴリズム、プリムのアルゴリズムの二点が紹介されています。いずれも20世紀半ばに発見された古典的なアルゴリズムです。 二つのうち前者、クラスカルのアルゴリズムは、コスト最小の辺から順番にみていって、その辺を選んだことで閉路が構成されなければ、それは安全な辺であるとみなし、最小全域木を構成する辺のひとつとして選択します。これを繰り返しているうちに最小全域木が構成されるというアルゴリズムです。 今日はクラスカルのアルゴリズムを Python で実装してみました。扱うグラフは書籍の例を使ってみました。以下

    クラスカルのアルゴリズム - naoyaのはてなダイアリー
  • Perceptron を手で計算して理解してみる (nakatani @ cybozu labs)

    Perceptron の実装とか見ると、ものすごく簡単なので、当にこれで学習できちゃうの? と不安になってしまいました(苦笑)。 こういうときは、実際にパーセプトロンが計算しているとおりに、紙と鉛筆で計算してみて、期待する結果が出てくることを確認してみたくなります。 参照する教科書は「パターン認識と機械学習・上」(PRML) の「 4.1.7 パーセプトロンアルゴリズム」。 短い節です。必要最低限のことを一通り書いてある感じかな。 計算に用いるサンプルですが、手で計算できる規模でないといけないので、論理演算の AND を試してみることにします。 簡単に勉強 ちゃんとした説明は PRML などを見て欲しいですが、とても簡単にまとめます。 2値の線形識別モデルは、N 次元空間内を (N-1) 次元の超平面(決定面)で分割することで、入力ベクトル x から得られる特徴ベクトル φ(x) が2つ

  • ビタビアルゴリズム - Wikipedia

    ビタビアルゴリズム(英: Viterbi algorithm)は、観測された事象系列を結果として生じる隠された状態の最も尤もらしい並び(ビタビ経路と呼ぶ)を探す動的計画法アルゴリズムの一種であり、特に隠れマルコフモデルに基づいている。観測された事象系列の確率計算のアルゴリズムである 前向きアルゴリズム(英: forward algorithm)も密接に関連している。これらのアルゴリズムは情報理論の一部である。 このアルゴリズムには、いくつかの前提条件がある。まず、観測された事象と隠されている事象は1つの系列上に並んでいる。この系列は多くの場合時系列である。次に、これら2つの並びには一対一の対応があり、1つの観測された事象は正確に1つの隠されている事象に対応している。第三に、時点 での最も尤もらしい隠されている事象の計算は、 での観測された事象と での最も尤もらしい隠された事象の系列のみに依

  • ohmm(オンラインEMによるHMM学習)をリリースしました - DO++

    Ohmm-0.01をリリースしました [Ohmm 日語] [Ohmm English] これは、以前のブログで書いた、オンラインEM法をそのまま素直に隠れマルコフモデル(HMM)に対し適用したライブラリです。 使う場合は、単語(アクセス履歴とかなんでもよい)に分けられているテキストを入力として与えれば、HMMによる学習を行い、結果を出力します。他で利用できるように、パラメータを出力したり、単語のクラスタリング結果を出力します。 HMM自体は、言語情報やアクセス履歴、生物情報(DNA)といったシーケンス情報において、前後の情報を用いて各要素をクラスタリングしたい場合に用います。 ライブラリの特徴はオンラインEMの特徴通り、従来のEMよりも速く収束します。一応標準的な最適化手法(スケーリング、スパースな期待値情報の管理)もいれているので、そこそこ高速に動きます 速度的には100万語、隠れ状

    ohmm(オンラインEMによるHMM学習)をリリースしました - DO++
  • SQLで木と階層構造のデータを扱う――入れ子集合モデル

    サービス終了のお知らせ いつもYahoo! JAPANのサービスをご利用いただき誠にありがとうございます。 お客様がアクセスされたサービスは日までにサービスを終了いたしました。 今後ともYahoo! JAPANのサービスをご愛顧くださいますよう、よろしくお願いいたします。

  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

  • レコメンド, LSH, Spectral Hashing - DO++

    WEB+DB press vol.49にレコメンド特集の記事をtkngさんと書きました。 内容は最初は、協調フィルタリングやコンテンツマッチの簡単な話から、特徴量をどのように表すか、大規模データをどのように処理するかにいき、特異値分解などの低ランク行列分解によるレコメンドやRestricted Boltzmann Machineといった最近のnetflix prizeの上位の手法など、かなり突っ込んだ議論もしてます。 個人的には三章でLocality Sensitive Hash(LSH)について扱っているあたりがお勧めです。 レコメンドの内部の問題を極言すると、データというのは疎な高次元の数値ベクトル(数百万次元とか)で表され、クエリでベクトルが与えられた時、これと似たようなベクトルを探してこいという問題になります。”似たような”を数学的にいえば、クエリのベクトルとの内積(各ベクトルは長

    レコメンド, LSH, Spectral Hashing - DO++
  • 新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改

    新はてブ正式リリース記念ということで。もうリリースから何週間も経っちゃったけど。 新はてなブックマークではブックマークエントリをカテゴリへと自動で分類しているが、このカテゴリ分類に使われているアルゴリズムはComplement Naive Bayesらしい。今日はこのアルゴリズムについて紹介してみる。 Complement Naive Bayesは2003年のICMLでJ. Rennieらが提案した手法である。ICMLというのは、機械学習に関する(たぶん)最難関の学会で、採択率はここ数年は30%を切っている。2003は119/371で、32.1%の採択率だったようだ。 Complement Naive Bayesの位置づけは 実装が簡単 学習時間が短い 性能もそこそこよい という感じで、2003年段階にあっても、絶対的な性能ではSVMに負けていた。しかし、学習が早いというのは実アプリケーシ

    新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改
  • GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)

    GC¥¢¥ë¥´¥ê¥º¥à¾ÜºÙ²òÀâ ÆüËܸì¤Î»ñÎÁ¤¬¤¹¤¯¤Ê¤¤GC¥¢¥ë¥´¥ê¥º¥à¤Ë¤Ä¤¤¤Æ¾ÜºÙ¤Ë²òÀ⤷¤Þ¤¹ ¥È¥Ã¥×¥Ú¡¼¥¸¥Ú¡¼¥¸°ìÍ÷¥á¥ó¥Ð¡¼ÊÔ½¸ GC ºÇ½ª¹¹¿·¡§ author_nari 2010ǯ03·î14Æü(Æü) 20:47:11ÍúÎò Tweet ¤³¤ÎWiki¤¬Ìܻؤ¹½ê GC¤È¤Ï¡© GC¤ò³Ø¤ÖÁ°¤ËÃΤäƤª¤¯»ö ¼Â¹Ô»þ¥á¥â¥ê¹½Â¤ ´ðËÜ¥¢¥ë¥´¥ê¥º¥àÊÔ Reference Counter Mark&Sweep Copying ±þÍÑ¥¢¥ë¥´¥ê¥º¥àÊÔ IncrementalGC À¤ÂåÊÌGC ¥¹¥Ê¥Ã¥×¥·¥ç¥Ã¥È·¿GC LazySweep TwoFinger Lisp2 Pa

    GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)
  • 1