タグ

algorithmとprogrammingに関するbasiのブックマーク (11)

  • 「最強最速アルゴリズマー養成講座」関連の最新 ニュース・レビュー・解説 記事 まとめ - ITmedia Keywords

    最強最速アルゴリズマー養成講座: そのアルゴリズム、貪欲につき――貪欲法のススメ アルゴリズムの世界において、欲張りであることはときに有利に働くことがあります。今回は、貪欲法と呼ばれるアルゴリズムを紹介しながら、ハードな問題に挑戦してみましょう。このアルゴリズムが使えるかどうかの見極めができるようになれば、あなたの論理的思考力はかなりのレベルなのです。(2010/9/4) 最強最速アルゴリズマー養成講座: 病みつきになる「動的計画法」、その深淵に迫る 数回にわたって動的計画法・メモ化再帰について解説してきましたが、今回は実践編として、ナップサック問題への挑戦を足がかりに、その長所と短所の紹介、理解度チェックシートなどを用意しました。特に、動的計画法について深く掘り下げ、皆さんを動的計画法マスターの道にご案内します。(2010/5/15) 最強最速アルゴリズマー養成講座: アルゴリズマーの登

  • 最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ

    動的計画法とメモ化再帰 今回は、非常によく用いられるアルゴリズムである、「動的計画法」「メモ化再帰」について説明します。この2つはセットで覚えて、両方使えるようにしておくと便利です。 なお、メモ化再帰に関しては、第5・6回の連載の知識を踏まえた上で読んでいただけると、理解が深まります。まだお読みになっていない方は、この機会にぜひご覧ください。 中学受験などを経験された方であれば、こういった問題を一度は解いたことがあるのではないでしょうか。小学校の知識までで解こうとすれば、少し時間は掛かるかもしれませんが、それでもこれが解けないという方は少ないだろうと思います。 この問題をプログラムで解こうとすると、さまざまな解法が存在します。解き方によって計算時間や有効範囲が大きく変化しますので、それぞれのパターンについて考えます。 以下の説明では、縦h、横wとして表記し、プログラムの実行時間に関しては、

    最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ
  • 最強最速アルゴリズマー養成講座:あなたの論理的思考とコーディング力は3倍高められる (1/2) - ITmedia エンタープライズ

    全世界で20万人を超える凄腕のコーダーが集うプログラミングコンテスト「TopCoder」。稿では、アルゴリズム部門のSRMで取り上げられる問題を考えながら、論理的思考力およびコーディングのテクニックを養っていきます。 はじめに はじめまして。高橋直大です。連載「最強最速アルゴリズマー養成講座」では、全世界で20万人を超える凄腕のコーダーが集うプログラミングコンテスト「TopCoder」について、そこで出題される数学・アルゴリズムのパズルを考えることで、コーディングのテクニックおよび論理的思考力を磨くことを目的に開始するものです。ここで扱う技法は主にアルゴリズムのそれですが、その根底にはロジカルな思考術が存在します。そうした能力を養いたい方にとって少しでも役に立てれば幸いです。 なお、稿は必要に応じてコーディング例も紹介しますが、TopCoderで出題される問題の中から比較的やさしい問

    最強最速アルゴリズマー養成講座:あなたの論理的思考とコーディング力は3倍高められる (1/2) - ITmedia エンタープライズ
  • Binary Indexed Tree (Fenwick Tree) - naoyaのはてなダイアリー

    圧縮アルゴリズムにおける適応型算術符号の実装では、累積頻度表を効率的に更新できるデータ構造が必要になります。もともと算術符号を実装するには累積頻度表が必要なのですが、これが適応型になると、記号列を先頭から符号化しながら、すでに見た記号の累積頻度を更新していく必要があるためです。 累積度数表をナイーブに実装すると、更新には O(n) かかってしまいます。配列で表を持っていた場合、適当な要素の頻度に更新がかかるとその要素よりも前の要素すべてを更新する必要があります。適応型算術符号のように記号を符号化する度に更新がかかるケースには向いていません。 Binary Indexed Tree (BIT, P.Fenwick 氏の名前を取って Fenwick Tree と呼ばれることもあるようです) を使うと、累積頻度表を更新 O(lg n)、参照 O(lg n) で実現することができます。BIT は更

    Binary Indexed Tree (Fenwick Tree) - naoyaのはてなダイアリー
  • データベースの動的デフラグ - mixi engineer blog

    ノートPCの冷却ファンがうるさいのを対処しようとしてWebで調べたら、そのファンの設計者が「静音性へのこだわり」を語ったページにたどり着いて複雑な心境のmikioです。今回は、Tokyo Cabinet(TC)の最新バージョンで実装された動的デフラグ機能について長々と説明します。 断片化とデフラグ 任意のサイズのデータを管理する記憶装置においては、利用可能領域の断片化(fragmentation)の問題が常につきまといます。ファイルシステム上で任意のサイズのファイルを管理する際にも、データベースファイル内で任意のサイズのレコードを管理する際にも、C言語のmalloc/free関数群でメモリの管理をする際にも、様々なレイヤで断片化が起きうるのです。なぜなら、データを削除もしくは移動した際の空き領域を再利用するにあたって、その領域と同じサイズのデータが常に入ってくるとは限らないからです。特にデ

    データベースの動的デフラグ - mixi engineer blog
  • SQLで木と階層構造のデータを扱う――入れ子集合モデル

    サービス終了のお知らせ いつもYahoo! JAPANのサービスをご利用いただき誠にありがとうございます。 お客様がアクセスされたサービスは日までにサービスを終了いたしました。 今後ともYahoo! JAPANのサービスをご愛顧くださいますよう、よろしくお願いいたします。

  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

  • ベイズを学びたい人におすすめのサイト - download_takeshi’s diary

    ベイジアンフィルタとかベイズ理論とかを勉強するにあたって、最初はなんだかよくわからないと思うので、 そんな人にお勧めのサイトを書き残しておきます。 @IT スパム対策の基技術解説(前編)綱引きに蛇口当てゲーム?!楽しく学ぶベイズフィルターの仕組み http://www.atmarkit.co.jp/fsecurity/special/107bayes/bayes01.html いくつかの絵でわかりやすく解説してあります。 自分がしるかぎり、最もわかりやすく親切に解説してる記事です。数学とかさっぱりわからない人はまずここから読み始めるといいでしょう。 茨城大学情報工学科の教授のページから http://jubilo.cis.ibaraki.ac.jp/~isemba/KAKURITU/221.pdf PDFですが、これもわかりやすくまとまってます。 初心者でも理解しやすいし例題がいくつかあ

    ベイズを学びたい人におすすめのサイト - download_takeshi’s diary
  • KENJI

    更新履歴 DNS拡張EDNS0の解析 Linuxカーネルをハッキングしてみよう Windowsシステムプログラミング Part 3 64ビット環境でのリバースエンジニアリング Windowsシステムプログラミング Part2 Windowsシステムプログラミング Part1 Contents インフォメーション 「TCP/IPの教科書」サポートページ 「アセンブリ言語の教科書」サポートページ 「ハッカー・プログラミング大全 攻撃編」サポートページ ブログ(はてな) BBS メール このサイトについて テキスト 暗号 詳解 RSA暗号化アルゴリズム 詳解 DES暗号化アルゴリズム crypt() アルゴリズム解析 MD5 メッセージダイジェストアルゴリズム crypt() アルゴリズム解析 (MD5バージョン) TCP/IP IP TCP UDP Header Format(IPv4) Ch

  • 新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改

    新はてブ正式リリース記念ということで。もうリリースから何週間も経っちゃったけど。 新はてなブックマークではブックマークエントリをカテゴリへと自動で分類しているが、このカテゴリ分類に使われているアルゴリズムはComplement Naive Bayesらしい。今日はこのアルゴリズムについて紹介してみる。 Complement Naive Bayesは2003年のICMLでJ. Rennieらが提案した手法である。ICMLというのは、機械学習に関する(たぶん)最難関の学会で、採択率はここ数年は30%を切っている。2003は119/371で、32.1%の採択率だったようだ。 Complement Naive Bayesの位置づけは 実装が簡単 学習時間が短い 性能もそこそこよい という感じで、2003年段階にあっても、絶対的な性能ではSVMに負けていた。しかし、学習が早いというのは実アプリケーシ

    新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改
  • GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)

    GCアルゴリズム詳細解説 日語の資料がすくないGCアルゴリズムについて詳細に解説します トップページページ一覧メンバー編集 × GC 最終更新: author_nari 2010年03月14日(日) 20:47:11履歴 Tweet このWikiが目指す所 GCとは? GCを学ぶ前に知っておく事 実行時メモリ構造 基アルゴリズム編 Reference Counter Mark&Sweep Copying 応用アルゴリズム編 IncrementalGC 世代別GC スナップショット型GC LazySweep TwoFinger Lisp2 Partial Mark and Sweep -Cycle Collection- Mostly Parallel GC train gc MostlyCopyingGC(Bartlett 1989) TreadmillGC(Barker 1992)

    GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)
  • 1