「第5回 データマイニング+WEB 勉強会@東京-WEB解析・最適化祭り-」の講師資料です(10/06/20) hamadakoichi 濱田晃一 Read less
Bayesian Sets (Ghahramani and Heller, NIPS 2005)は Google Sets と同じようなことをベイズ的に行うアルゴリズムです。 いくつかアイテムを入れると, それを「補完する」ようなアイテムを 返してくれます。 これは NIPS の accepted papers が出た去年の8月から気になっていて, 本会議ではオーラルの発表もあって大体のやっていることはわかった ものの, 何と(本会議の時も!)論文がなく, 直接Hellerに連絡して もらえるように頼んでいたところ, Online proceedings の締切りがあった 時に連絡があって, 読めるようになりました。(リンクは下のページ参照) 岡野原君に先に 紹介 されてしまいましたが, 以下は, 岡野原君が書いていない話。 Bayesian Sets は, アイテム集合 D に対して,
パターン認識と機械学習 - ベイズ理論による統計的予測† This is a support page for the Japanese edition of "Pattern Recognition and Machine Learning" authored by C. M. Bishop. 本書は,Christopher M. Bishop 著「Pattern Recognition and Machine Learning」の日本語版です.上下2巻の構成です. パターン認識や機械学習の各種のアルゴリズムや背後の考えについて,ベイズ理論の観点から解説した教科書です. 基礎的な線形モデルから,カーネルトリック,グラフィカルモデル,MCMCなどの発展的な話題までをバランス良く収録しています. 数式による形式的な記述だけにとどまらず,豊富なカラーの図による直観的な説明もなされています. 本
ベイジアンフィルタとかベイズ理論とかを勉強するにあたって、最初はなんだかよくわからないと思うので、 そんな人にお勧めのサイトを書き残しておきます。 @IT スパム対策の基本技術解説(前編)綱引きに蛇口当てゲーム?!楽しく学ぶベイズフィルターの仕組み http://www.atmarkit.co.jp/fsecurity/special/107bayes/bayes01.html いくつかの絵でわかりやすく解説してあります。 自分がしるかぎり、最もわかりやすく親切に解説してる記事です。数学とかさっぱりわからない人はまずここから読み始めるといいでしょう。 茨城大学情報工学科の教授のページから http://jubilo.cis.ibaraki.ac.jp/~isemba/KAKURITU/221.pdf PDFですが、これもわかりやすくまとまってます。 初心者でも理解しやすいし例題がいくつかあ
今日は daiti-m さんの教師なし単語分割話と id:nokuno さんの Social IME 話を聞きに行くため、仕事を午前中で終えて一路本郷へ。第190回自然言語処理研究会(通称 NL 研、えぬえるけんと発音する)。六本木から大江戸線で麻布十番、南北線に乗り換えて東大前で降りたのだが、ちょっと失敗して10分以上 Social IME の話を聞き逃してしまう。残念。 というわけで最初の発表については nokuno さん自身による発表スライドおよびshimpei-m くんのコメントを見てくれたほうがいいと思うが、個人的に思うのは(直接も言ったけど)研究発表とするならポイントを絞ったほうがいいんじゃないかなと。 研究の背景と目的 従来手法の問題点を指摘 それらを解決できる手法を提案(3つ) までは非常にいいのだが、そこから先がそのうちの1つしか説明・評価していないので、ちょっと述べてい
新はてブ正式リリース記念ということで。もうリリースから何週間も経っちゃったけど。 新はてなブックマークではブックマークエントリをカテゴリへと自動で分類しているが、このカテゴリ分類に使われているアルゴリズムはComplement Naive Bayesらしい。今日はこのアルゴリズムについて紹介してみる。 Complement Naive Bayesは2003年のICMLでJ. Rennieらが提案した手法である。ICMLというのは、機械学習に関する(たぶん)最難関の学会で、採択率はここ数年は30%を切っている。2003は119/371で、32.1%の採択率だったようだ。 Complement Naive Bayesの位置づけは 実装が簡単 学習時間が短い 性能もそこそこよい という感じで、2003年段階にあっても、絶対的な性能ではSVMに負けていた。しかし、学習が早いというのは実アプリケーシ
レコメンデーションの虚実(4)~ベイジアンは「Amazonを超えた」のか?:ソーシャルメディア セカンドステージ(1/2 ページ) Amazonを超えるレコメンデーションエンジン 今年8月6日・13日号の『日経ビジネス』誌に、「王子とニート 若者を浪費する日本社会」という特集が掲載された。この特集の中で紹介されていたのが、ライブドアのCTO(最高技術責任者)や代表取締役を経てゼロスタートコミュニケーションズを設立したzakiさんこと山崎徳之氏。この記事で、彼の登場する場面はなんとも凄い。次のような書き出しだ。 天才プログラマーの腕はさび付いていなかった。 「よし、とりあえずアマゾンは超えたかな」 東京・渋谷の小さなオフィスで、ゼロスタートコミュニケーションズ社長の山崎徳之はキーボードから手を離すと、小さく伸びをした。 この記事のことを聞いてみると、彼は苦笑しながらこう言った。「いやあ、さす
インターンの増田です。 ActiveRecordのデータを使ってベイジアンフィルタを使う必要があったので、この部分をプラグインActs as classified として抜き出してみました。 インストール 依存しているライブラリをインストールします。 gem install classifier stemmer プラグインをインストールします。 ./script/plugin install svn://rubyforge.org/var/svn/actasclassified/trunk/acts_as_classified また、日本語のデータを学習に用いる場合はMeCab とそのRubyバインディングをインストールします。 日本語は(DB, MeCabともに)UTF-8を対象にしています。 使い方 分類したいモデルでacts_as_classifiedとします。 class Arti
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く