「第5回 プログラマのための数学勉強会 発表資料 (2015/11/21[sat])」 内容は統計学の素養がある方には基本的な事項ですが、ベクトルと内積で見方を変えてみたという点と、あまり統計学に親しみがない方にも理解してもらえるようなまとめになっている、というところに本スライドの独自性があると考えていますので、その辺り良ければご覧ください^^Read less
PyData.Tokyo第1回チュートリアルイベント開催! PyData.Tokyoオーガナイザーのシバタです。 PyData.Tokyoは「Python+Dataを通じて、世界のPyDataエクスパートと繋がれるコミュニティーを作る」ことを目的として設立され、これまでに行ってきた勉強会は、質の高い登壇者と参加者が「濃い」議論をできる場として、広く知られるようになりました。イベントを管理しているconnpass上では500人を超えるメンバー登録があり、CodeZineでの連載もたくさんの方に読んでいただいております。 PyData.Tokyoで当初目標としていたのは、レベルの高いデータサイエンティストの集まる会を作ることに加え、これからデータサイエンティストになることを目指している方々の育成です。データサイエンティストの不足はあらゆるところで聞かれ、一方で幸いにも多くの方が今後データサイエ
ここ 1ヶ月にわたって 聖書 DeepLearning 0.1 Documentation を読み進め、ようやく 制約付きボルツマンマシン の手前まできた。 制約付きボルツマンマシン (RBM) の解説 には RBM = マルコフ確率場 ( Markov Random Field / MRF ) の一種だよっ、と しれっと書いてあるのだが マルコフ確率場とはいったい何なのかは説明がない。マルコフ確率場 <マルコフ・ランダム・フィールド> は用語もカッコイイし結構おもしろいので、 Python でサンプルを書いてみる。 補足 Python では PyStruct というパッケージがマルコフ確率場 / 条件付き確率場 ( Conditional Random Field ) を実装しているため、実用したい方はこちらを。このパッケージ、ノーマークだったがよさげだなあ。 マルコフ確率場とは グラフ
サンプルコードを動かして統計の直観的な理解を促した『Think Stats ―プログラマのための統計入門』の著者によるベイズ統計・ベイズ推論の解説書です。ベイズ統計は、不確実な問題を扱い、条件を付けた予測が必要なときに威力を発揮する統計手法の1つ。メールのフィルタやカーナビで使われていることは有名です。本書は『Think Stats』と同様、数学的な観点での記述は最小限にとどめ、実例を多く使って実用的観点からベイズ手法を解説します。Pythonで書かれたサンプルコードを使って実際に手を動かしながらベイズ統計を学ぶことができますが、プログラミングを知らない人にも役立つ内容です。 目次 まえがき 1章 ベイズの定理 1.1 条件付き確率 1.2 結合確率 1.3 クッキー問題 1.4 ベイズの定理 1.5 通時的解釈 1.6 M&M'S問題 1.7 モンティ・ホール問題 1.8 議論 2章 計
本書は「プログラミングのスキルを統計の理解に役立てよう」というコンセプトで書かれたものです。数学的な観点から語られることが多い統計について、計算処理の観点から説明。実際にPythonのコードを示し、実データを分析しながら統計の基礎を解説しています。日本語版では豊富な数学関数ライブラリを提供するPythonの科学技術計算用モジュールNumPyとSciPyに関する解説を付録として追加。NumPy/SciPyが持つ統計関数の解説のほか、本書に登場した問題をNumPy/SciPyを使って解く方法を紹介します。Pythonで書かれたサンプルコードを使って実際に手を動かしながら統計が学べる、プログラマのための統計入門の決定版です。 はじめに 1章 プログラマのための統計的な考え方 1.1 第一子は出産予定日よりも遅れるか? 1.2 統計的なアプローチ 1.3 全米世帯動向調査 1.4 テーブルとレコー
# 原文:http://www.scipy.org/Tentative_NumPy_Tutorial このチュートリアルを読む前に、Pythonについてちょっとは知っているべきだ。記憶をリフレッシュしたいと思うなら、Pythonチュートリアルを見てくるがいい。 このチュートリアルに出てくる例を試したいなら、あなたのPCに少なくとも Python NumPy はインストールされているべきで、他に入ってると便利なのは: ipython は拡張されたインタラクティブなPythonシェルで、NumPyの機能を探検するのにとても便利 matplotlib があると図表の描画が可能になる SciPy はNumPyの上で動く科学計算ルーチンを沢山用意してくれる 基礎 NumPy の主要なオブジェクトは、同じ型(普通は数)の要素のみから成り、正の整数のタプルで添字付けされた、均質なテーブル(というか多次元
R と Python の連携を考える 最近 R による基本的なデータプロッティングやファイル入出力の方法について説明しました。 データ分析の言語としては Python ですべてをやろうという傾向があるようですが、やはり過去の膨大な R による資産は魅力的でそう簡単に切り捨てられるものではありません。 よくあるケースとしては、部分的なデータ解析については R を流用したいが、全体的なプログラミングは Python で書きたいというシーンでしょう。また、プロッティングだけ R でおこないたいという場合もあるでしょう。こんなとき Python と R で連携できれば問題が一気に解決して便利です。 Python から R を利用するライブラリ PypeR かつては RPy2 というライブラリが使われていたようですが、最近使われており主流なのは PypeR です。 PypeR のインストール インス
プログラマーのための確率プログラミングとベイズ推定¶PythonとPyMCの使い方¶ベイズ推定(Bayesian method)は,確率推論のためのもっとも適切なアプローチであるにもかかわらず,書籍を読むとページ数も数式も多いので,あまり積極的に読もうとする読者は少ないのが現状である.典型的なベイズ推定の教科書では,最初の3章を使って確率の理論を説明し,それからベイズ推論とは何かを説明する.残念ながら多くのベイズモデルは解析的に解くことが困難であるため,読者が目にするのは簡単で人工的な例題ばかりになってしまう.そのため,ベイス推論と聞いても「だから何?」と思ってしまうのである.実際,著者の私がそう思っていたのだから. 最近の機械学習のコンテストで良い成績を収めることができたので,私はこのトピックを復習しようと思い立った. 私は数学には強い方である.しかしそれでも,例題や説明を読んで頭の中で
機械学習界隈の情報収集方法 http://d.hatena.ne.jp/kisa12012/20131215/1387082769 いきなりですが上記の記事に機械学習に関する有力な情報源がまとまっています。まずはここを参考にするのが良いかと思います。ただ情報が多すぎですので、筆者は Wikicfp と arXiv.org あたりの論文、それにはてなブックマークをチェックしています。 また論文については機械学習の論文を探すにも良い情報がまとまっています。こちらも参考になります。 機械学習は日進月歩の世界ですので、最新の査読済み論文を追って概略だけでも理解する能力を身に付けると良いかと思います。 書籍としては次の 2 冊が聖書とも言える必読書で、本気で機械学習をやりたければ必ず参考になるかと思います。 パターン認識と機械学習 (上・下) http://www.amazon.co.jp/dp/4
はじめに 最近超人気の漫画として私のTwitter TLを賑わす作品、その名も「進撃の巨人」。 これだけ人気なんだからきっと面白いに違いないのですが、 なんか絵が怖そうだし、人がバンバン死んでてグロいっぽいという噂を聞くので、 なんとか漫画を読まずに、それでいて進撃の巨人のキャラについては知りたい、 そう願う潜在的進撃の巨人ファンも全国に70万人くらいいらっしゃると思います。 そこで、データから進撃の巨人にどんなキャラが登場するか推測してみましょう。 扱うデータとして、pixivのタグ情報を利用します。 商品レビューコメントなどとは違い、ファンの創作活動がダイレクトに反映されるサービスなので、 そこに付与されるタグ情報は、ファンの熱(過ぎる)いメッセージが込められているに違いありません。 今回、以下のような縛りを入れています。 1.勿論原作は見ない 2.pixivのタグ情報は参照するけど、
Peter Norvig / 青木靖 訳 先週、2人の友人(ディーンとビル)がそれぞれ別個にGoogleが極めて早く正確にスペル修正できるのには驚くばかりだと私に言った。たとえば speling のような語でGoogleを検索すると、0.1秒くらいで答えが返ってきて、もしかして: spelling じゃないかと言ってくる(YahooやMicrosoftのものにも同様の機能がある)。ディーンとビルが高い実績を持ったエンジニアであり数学者であることを思えば、スペル修正のような統計的言語処理についてもっと知っていて良さそうなものなのにと私は驚いた。しかし彼らは知らなかった。よく考えてみれば、 別に彼らが知っているべき理由はないのだった。 間違っていたのは彼らの知識ではなく、私の仮定の方だ。 このことについてちゃんとした説明を書いておけば、彼らばかりでなく多くの人に有益かもしれない。Googleの
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く