タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

雑学とあとで読むに関するbiochem_fanのブックマーク (1)

  • グッドスタインの定理 - Wikipedia

    グッドスタインの定理(グッドスタインのていり、Goodstein's theorem)は、数理論理学における自然数に関する命題であり、「全てのグッドスタイン数列は必ず0で終わる」という主張。ペアノ算術からは決定不能(証明も反証もできないこと)が知られている。 ペアノ算術に決定不能な命題があること自体は、ゲーデルの不完全性定理により示されている。しかし、不完全性定理の一般的な証明で用いる命題が自己言及のパラドックスを利用した「人工的」なものであるのに対し、グッドスタインの定理は「自然な」決定不能命題の例として知られる。 なお、グッドスタインの定理は集合論の公理系、特に無限集合の公理を用いて証明できる。 グッドスタイン数列を定義するに当たり、まず「nを底とした遺伝的記法」を定義する。ある自然数をnを底とした遺伝的記法で表すためには、まずその数を(ただし、は0とn-1の間の値をとる整数)という形

  • 1