タグ

ブックマーク / qiita.com/sonesuke (2)

  • 【GPT】プロンプトエンジニアリング手法まとめ - Qiita

    はじめまして、sonesuke( https://twitter.com/sonesuke ) です。 LLMのニュースを追っかけ続けたので、これからキャッチアップする人用にまとめておきます。 単発のプロンプトテクニックについてはこちらご覧ください。 これだけは知っとけ用語 各手法の説明を読む前に、これらの用語を読んでおくと各手法がわかります。知っている人は飛ばしてください。 プロンプトエンジニアリング 入力(プロンプト)を工夫して性能をあげようというアプローチ。 機械学習系で精度アップといえば、追加学習させたりモデルを拡張するのですが、LLMではモデルが大き過ぎてコストが洒落になりません。 そのような事情からプロンプト側を工夫することで、回答に直接影響を与えるという手法が発達しています。 ファインチューニング モデルを新たな学習データで追加学習させ、モデルのパラメータを更新し、精度を高め

    【GPT】プロンプトエンジニアリング手法まとめ - Qiita
  • 【ChatGPT】プロンプトパターンまとめ - Qiita

    はじめまして、sonesuke(https://twitter.com/sonesuke)です。 LLMにどっぷりハマっています。 TL; DR 16のプロンプトパターンを日語の例をつけて、まとめてみた。 読んだ論文はこれ。 https://arxiv.org/pdf/2302.11382.pdf より高度なプロンプトエンジニアリングの話題はこちら プロンプトパターン 1. メタ言語パターン: The Meta Language Creation いつ使うか? 自然言語ではない方が、より簡潔で明確に表現できるとき プロンプトコンセプト 例 原文プロンプト “From now on, whenever I type two identifiers separated by a “→”, I am describing a graph. For example, “a → b” is des

    【ChatGPT】プロンプトパターンまとめ - Qiita
  • 1