第13回 モヤLT発表資料
機械学習×プログラミング勉強会 vol.2 での発表資料です。 ベイズの何が嬉しいか、ノンパラベイズの何が嬉しいかを数式を使わず語ります。Read less
250. Reference "Pattern Recognition and Machine Learning" Christopher M. Bishop Springer; 1st ed. 2006. Corr. 2nd printing edition (October 1, 2007) "Truth and Probability" Frank Plumpton Ramsey (1926) "The physical basis of IMRT and inverse planning" S Webb British Journal of Radiology (2003) 76, 678-689 251. Wikipedia 渡辺慧 http://ja.wikipedia.org/wiki/%E6%B8%A1%E8%BE%BA%E6%85 %A7 『No Free Lunch T
「ノンパラメトリック」って言うくらいだからパラメータ無いんかと思ってたら、パラメータめっちゃあるし。 機械学習のネーミングのひどさはこれに始まった話じゃあないけど、それにしたって。 ノンパラの一番素朴なやつ( K-means とか)は本当にパラメータ無くてデータだけだから納得なんだけど、だんだん欲が出てパラメータ足しちゃったり派生させちゃったりしてるうちに、よくわかんなくなってきちゃったんだろうかねえ。まったく。 どれどれ、と英語版 Wikipedia の "Non-parametric statistics" を見たら、なんか意味が4種類くらい書いてあるし。じゃあ名前分けろよ。 en.wikipedia.org とりあえずここで言う「ノンパラ」とは、変数の個数決めなくていい「分布の分布」なメタっぽいやつのこと。つまりディリクレ過程とか、ディリクレ過程とか、そこらへん。 「あー、ノンパラベ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く