タグ

PythonとCNNに関するchess-newsのブックマーク (2)

  • 基本的なRecurrent Neural Networkモデルを実装してみた - Qiita

    Recurrent Neural Network(再帰型ニューラルネット)に関心はあるが,なかなかコード作成に手がつかない,このようなケースが多くないだろうか?理由はいくつかあるが,私の場合は次のようなものが思い当たる. 単純にネットワークの構成が複雑.MLP(Multi-layer Perceptron)から入門してCNN(Convolutional-NN)に進むまでは,特殊なLayerがあるにせよ,信号の流れは順方向のみであった.(誤差の計算は除く.) MLPやCNNにおいては分かりやすい例題,(Deep Learningの’Hello World'と称される)"MNIST" があったが,そのような標準的な(スタンダードな)例題がRNNにはない. 因みにTheanoのDeep LearningやTensorFlowのTutorialは,言語モデルを扱ったものである.言語モデルに精通され

    基本的なRecurrent Neural Networkモデルを実装してみた - Qiita
  • ねこと画像処理 part 3 – Deep Learningで猫の品種識別 – Rest Term

    ねこと画像処理。 (みかん – 吉祥寺 きゃりこ) 前回の ねこと画像処理 part 2 – 検出 では画像内のの顔を検出する方法を紹介しましたが、今回はディープラーニングの技術を用いての品種を識別したいと思います。 学習データ ねこと画像処理 part 1 – 素材集めでは、自分で撮影した写真を学習データとして使うと書いたのですが、都内のカフェ等で出会えるに限ってしまうと品種の偏りが大きくなってしまうので、ここではしぶしぶ研究用のデータセットを使うことにします。。ただ、Shiba Inuがあるのに日が誇るMike Nekoが含まれていないのでデータセットとしての品質は悪いと思います。 The Oxford-IIIT-Pet dataset オックスフォード大学が公開している動物画像のデータセットです。その内画像は2400枚、クラス数は12で1クラスにつき200枚あります。今

    ねこと画像処理 part 3 – Deep Learningで猫の品種識別 – Rest Term
  • 1