はじめに このページでは R を用いた統計分析の基本を解説しています。 目次 RとRStudioの導入 Google ColaboratoryでR言語を使う Rのデータ構造 データセットの作成と加工 その他のRの概念 図の作成 基本的な統計分析 回帰分析 因子分析 テスト課題 画面上部の左端のアイコンを押すか、キーボードの S キーを押すとメニューの表示・非表示を切り替えることができます。
The tidyverse is an opinionated collection of R packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures. Install the complete tidyverse with: install.packages("tidyverse") See how the tidyverse makes data science faster, easier and more fun with “R for Data Science (2e)". Read it online, buy the book or try another resource from the comm
整然データとは、1) 個々の変数が1つの列をなす、2) 個々の観測が1つの行をなす、3) 個々の観測の構成単位の類型が1つの表をなす、4) 個々の値が1つのセルをなす、という4つの条件を満たした表型のデータのことであり、構造と意味が合致するという特徴を持つ。R言語などを用いたデータ分析の際には非常に有用な概念である。 はじめに データ分析の際には、データが扱いやすい形式になっている必要がある。データの中身がぐちゃぐちゃになっていたり、データの形式が統一されていなかったりすれば、分析は骨の折れる作業となる。 それでは、どのようなものがデータ分析において扱いやすい形式のデータになるのだろうか。この問題に対する唯一の正しい解答というものは存在しない。しかし、表の形式で表すことができるデータを考える場合、ハドリー・ウィッカム (Hadley Wickham) 氏が提唱した整然データ (tidy d
(This article was first published on Ecology in silico, and kindly contributed to R-bloggers) Violin plots are useful for comparing distributions. When data are grouped by a factor with two levels (e.g. males and females), you can split the violins in half to see the difference between groups. Consider a 2 x 2 factorial experiment: treatments A and B are crossed with groups 1 and 2, with N=1000. 1
主観的な観点からPythonとRの比較した記事は山ほどあります。それらに私たちの意見を追加する形でこの記事を書きますが、今回はこの2つの言語をより客観的な目線で見ていきたいと思います。PythonとRを比較をしていき、同じ結果を引き出すためにはそれぞれどんなコードが必要なのかを提示していきます。こうすることで、推測ではなく、それぞれの言語の強みと弱みの両者をしっかりと理解できます。 Dataquest では、PythonとRの両方の言語のレッスンを行っていますが、データサイエンスのツールキットの中では両者ともそれぞれに適所があります。 この記事では、NBA選手の2013/2014年シーズンの活躍を分析したデータセットを解析していきます。ファイルは ここ からダウンロードしてください。解析はまずPythonとRのコードを示してから、その後に2つの異なるアプローチを解説し議論していきます。つま
The rpy2 site has moved to https://rpy2.bitbucket.io. You will be redirected in 15 s econds. About rpy2 is an interface to R running embedded in a Python process. The project is mature, stable, and widely used. Source and installation Released source packages are available on PyPi. Installing should be as easy as pip install rpy2 The source code is also in a public repository on bitbucket. Documen
The rpy2 site has moved to https://rpy2.bitbucket.io. You will be redirected in 15 s econds. About rpy2 is an interface to R running embedded in a Python process. The project is mature, stable, and widely used. Source and installation Released source packages are available on PyPi. Installing should be as easy as pip install rpy2 The source code is also in a public repository on bitbucket. Documen
これの続き。よく使う集約/変換処理もまとめておく。 準備 library(dplyr) library(tidyr) (df <- dplyr::tbl_df(iris)) # Source: local data frame [150 x 5] # # Sepal.Length Sepal.Width Petal.Length Petal.Width Species # 1 5.1 3.5 1.4 0.2 setosa # 2 4.9 3.0 1.4 0.2 setosa # 3 4.7 3.2 1.3 0.2 setosa # .. ... ... ... ... ... グルーピング/集約 ある列の値ごとに集計 Species 列ごとに Sepal.Length 列の合計を算出する場合、 df %>% dplyr::group_by(Species) %>% dplyr::summa
単純な作図ならば,引数に add=T を入れることで重ねた図を描くことができる.2 つのグラフの x 軸と y 軸の座標は自動的に合わせられる. しかし,高水準作図関数の中には add=T を引数にもってくることが出来ないものがある.そこで,グラフィックスパラメータの new を T と指定することで,既存のグラフに新たなグラフを上書きするように指定することが出来る. par(new=T) で重ね描きする場合,そのままでは軸と軸のラベルが重ね描きされる.2 回目の plot() によって軸と軸のラベルが重ね書きされるのを避けるため,1 回目のプロット時に axes=F , xlab="",ylab=""(もしくは ann=T )を指定するのが得策である. par(new=T) で重ね描きする場合,普通はそれぞれのグラフの座標範囲が異なるため,仕上がりがおかしくなる.重ね描きする全てのグラフ
今回は仕事で解析をしていて「おっと危ない」と思ったことについて書いてみます。結論からいうと「信頼区間と予測区間を混同しないように注意しましょう!」という話です*1。 課題:BODの値からTOCの値を推定したい 最近ややあってBOD(生物化学的酸素要求量)の値からTOC(全有機炭素量)の値を推定してみようと思いました*2。 試しに東京都の15地点から得られている水質データを用いてRで両者の散布図を描いてみると以下のようになりました(データはこちら:BOD-TOC.txt )。相関はあるものの、バラツキもかなりあります。 BOD2TOC.data <- read.table("BOD-TOC.txt",sep=",") TOC <- BOD2TOC.data$TOC BOD <- BOD2TOC.data$BOD plot(BOD,TOC,type="p",xlim=c(0,6),ylim=c
R は有名な統計言語『 S 言語』をオープンソースとして実装し直した統計解析ソフトです.さまざまなプラットフォーム(OS)に対応しており,誰でも自由にダウンロードすることができます.それにも関わらず,世界中の専門家が開発に携わっており,日々新しい手法・アルゴリズムが付け加えられています.とにかく計算が速い上にグラフィックも充実しているので数値計算などにも持ってこいです.このドキュメントは Windows 版 R と Mac OS X 版 R(と一部 Linux 版 R )でコマンドを調べた足跡です. ちなみに,この頁の内容を新しくした書籍は こちら ,電子書籍版は こちら で販売されております.
Getting Started R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror. If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send
R と Python の連携を考える 最近 R による基本的なデータプロッティングやファイル入出力の方法について説明しました。 データ分析の言語としては Python ですべてをやろうという傾向があるようですが、やはり過去の膨大な R による資産は魅力的でそう簡単に切り捨てられるものではありません。 よくあるケースとしては、部分的なデータ解析については R を流用したいが、全体的なプログラミングは Python で書きたいというシーンでしょう。また、プロッティングだけ R でおこないたいという場合もあるでしょう。こんなとき Python と R で連携できれば問題が一気に解決して便利です。 Python から R を利用するライブラリ PypeR かつては RPy2 というライブラリが使われていたようですが、最近使われており主流なのは PypeR です。 PypeR のインストール インス
「Rによる統計解析」 オーム社 刊 サポートページ 目次 第1章 Rを使ってみる 第2章 データの取り扱い方 第3章 一変量統計 第4章 二変量統計 第5章 検定と推定 第6章 多変量解析 第7章 統合化された関数を利用する 第8章 データ分析の例 付録A Rの解説 付録B Rの参考図書など はじめに R とは何か,何ができるかのリンク集(日本のもののみ) R を使うためにはどうしたらいいの? データなどの読み書き R の定石(R に限らずプログラミングの定石も) R を使って実際に統計解析をする AtoZ 一連の流れ データファイルの準備をする 分析してみる 分析結果を LaTeX で処理したり,ワープロに貼り込んだりする 道具立て 連続変数データをカテゴリーデータに変換 カテゴリーデータの再カテゴリー化 度数分布表と度数分布図の作成 散布図・箱髭図の描画 クロス集計(独立性の検定,フィ
Rは統計解析のブッシュナイフだ 実践! Rで学ぶ統計解析の基礎(1) オープンソースの統計処理言語・環境の「R」を使って実践的な統計解析のテクニックとリテラシーを習得しよう!
ロジスティック回帰について調べている。 ロジスティック回帰モデルのパラメータの最尤推定量は、不偏推定量ではなく、バイアスがある。 例として、サンプルサイズ 、入力変数の数 のときを考える。 パラメータ 300個の真の値を、最初の 100個は 、次の 100個は 、残りの 100個は に設定して推定してみよう。 n <- 1500 p <- 300 # データの生成 set.seed(314) x <- rnorm(n * p, mean = 0, sd = sqrt(1/n)) X <- matrix(x, nrow = n, ncol = p) beta <- matrix(c(rep(10, p/3), rep(-10, p/3), rep(0, p/3))) logistic <- function(t) 1 / (1 + exp(-t)) prob <- logistic(X %*
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く