import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)
確率統計の勉強会資料を大幅に改定しました。数式を最小限にし、統計分析のためのトピックを総覧的に資料化しています。 2021/11/20 内容や記載を拡充しました(合わせて SpeakerDeckに移動しました) https://speakerdeck.com/hidekatsu_izuno/que-lu-tong-ji-ji-jie-xue-xi-sofalseqian-ni Read less
はじめに 過去に参加したKaggleの情報をアップしていきます. ここでは,BOSCHのデータ紹介とフォーラムでの目立った議論をピックアップします. コンペ優勝者のコードや役立つKernelに関しては,Kaggleまとめ:BOSCH(winner),Kaggleまとめ:BOSCH(kernels)にまとめており,こちらは概要とディスカッションのまとめになります. (フォーラムの内容は後々追記していきます.) 本記事はPython2.7, numpy 1.11, scipy 0.17, scikit-learn 0.18, matplotlib 1.5, seaborn 0.7, pandas 0.17を使用しています. jupyter notebook上で動作確認済みです.(%matplotlib inlineは適当に修正してください) サンプルスクリプトを実行した際にエラー等あった場合は
教師あり学習 大量のメールがあって、それぞれ人間の目でSPAMかどうかが判定済みであるとします。 それらのメールの何となくSPAMっぽい2単語「主人」「オオアリクイ」に注目し、各メールにそれらの単語が何回出てくるかを数えてグラフにプロットしたら下記のようになったとします。 (「主人」出現回数を、「オオアリクイ」出現回数をとおきます。) 何だか、グラフ中に直線を引けばSPAMとそうでないメールを分けられそうだと思いませんか。 そしてその直線を基準にすれば、未判定のメールがSPAMなのかどうかも判断できそうな気がしませんか。 これが識別関数による教師あり学習の基本です。 教師あり学習では、教師データと呼ばれるデータをたくさん読み込ませて機械に学習させます。 教師データというのは「パラメータと正解ラベルの組」です。今回の例でいくとパラメータとは「主人」「オオアリクイ」という単語の数、正解ラベルと
シリコンバレーの有名大学であるスタンフォード大学で、Andrew Ng先生の教える機械学習の講義が人気を集めている。この講義は形を変え、courseraという無料のWeb上オンラインコースとしても受講でき、ここ日本でも機械学習の勉強がしたい人達の間でも人気の講義となっている。 [Machine Learning by Stanford University] https://www.coursera.org/learn/machine-learning/ 人気の秘密 Andrew Ng先生の講義は内容が非常に実用的であることが人気の理由の1つとして挙げられるだろう。Andrew Ng先生はシリコンバレーの企業を相手に機械学習の指導をしている。おそらくその経験から、理論に走りすぎず、機械学習を適用するプロジェクトにおいて本当に有意義な内容に強くフォーカスしていることが感じられるのだ。Andr
機械学習で現れる数式に関して、これを見たら瞬時に理解すべきものを載せておきます。 機械学習で現れる数式には大量の添字があり、それらのせいで一体どのような計算が行われているのかを瞬時に把握するのが難しくなっています。しかしもはやこれは慣れの問題です。 教科書を根気強く理解できるようにするのもいいですが、予めどのような表現があるのかを知っていれば、もっと楽に読み進めることができるはずです。そのための言わば事前に知っておくと言い数式たちを載せておきます。 行列の行と列の数 計算の法則 特に頻出する形式 和の計算と行列表現 内積 行列計算 出現場面 固有値と固有ベクトル 固有ベクトルは、ほとんど変換を受けないベクトル 固有値とは、固有ベクトルがどれだけ定数倍されたかを表す 出現場面 勾配 勾配はスカラー関数の各成分の傾き 勾配はスカラー関数の等高線の法線ベクトル 出現場面 終わりに 行列の行と列の
機械学習を勉強する際にぶつかる最大の壁は数学です。 機械学習に必要な数学をリストアップし、いつでも参照できるようにまとめておきたいと思います。 数学の必要性と手順 数学は世界共通の言語 機械学習をやる上で厳密な数学は必要なし レベル別、必要な数学 機械学習の処理が具体的にどんな計算をしているのかが分かる 機械学習アルゴリズムの導出は追えなくとも、その手法の狙いが分かる 機械学習のアルゴリズムの導出を追い、アルゴリズムの理屈を理解する 行列の計算公式をまとめてあるpdf 数学の本に関して 数学の必要性と手順 数学は世界共通の言語 冒頭で述べた通り、機械学習で何をやっているのか分からない!となるのは大抵数学がわからないからです。もちろん数学が分かっていても、機械学習でわからないことは出てきますが、ちょっと数学が分かってさえいれば殆どの手法が見通しよく理解できます。それは非常に単純な理由で、数学
プログラミング言語「Python」は機械学習の分野で広く使われており、最近の機械学習/Deep Learningの流行により使う人が増えているかと思います。一方で、「機械学習に興味を持ったので自分でも試してみたいけど、どこから手を付けていいのか」という話もよく聞きます。本連載「Pythonで始める機械学習入門」では、そのような人をターゲットに、Pythonを使った機械学習について主要なライブラリ/ツールの使い方を中心に解説していきます。 連載第1回は、ライブラリ/ツール群の概要説明からです。各ライブラリ/ツールの詳細な使い方や実用上のテクニックは連載第2回以降で解説していきます。ここで挙げるライブラリ/ツール群は「普段、筆者が仕事で使っているもの」という基準で選定されています。そういう意味で全く網羅的ではなく、独断と偏見であることを自覚していますので、ご了承ください。 連載初回である本稿で
Ruby Business Users Conference 2017
sonots先生の話を聞きに行ってきたので、そのメモを残しておきます。 瀬尾 直利 氏 DeNA Co., Ltd. AIシステム部 リードエンジニア DeNAの機械学習基盤 ディープラーニングの基盤 => GPU基盤 という認識 GPUすごくて、CPU使って30日のところ、GPUを使うと4日くらいのオーダー GPUの特徴 並列処理が得意 CPUだと24coreとかのオーダー GPUでは3000〜4000core 分岐処理は苦手 行列演算に向いている GPU製品 NVIDIA Tesla HPC向けにGPUシリーズ NVIDIA GeForce GRID クラウドゲーミング向け AMD FirePro NVIDIA Tesla API CUDA OpenCL DirectCompute CUDAのアーキテクチャ CPU(ホスト)からGPU(デバイス)にデータを転送 GPUで処理 GPUから
2. ⾃⼰紹介 • 名前: takano • Twitter: @mtknnktm • 仕事: Web系企業のデータ関連あれこれ • 興味: 計算社会科学・複雑系科学 • もろもろ – Publications: https://sites.google.com/site/mtkn35699/ – Slide: http://www.slideshare.net/MasanoriTakano1 – Blog: http://mtkn.hatenablog.com/ 2 3. • ふと回帰分析したくなった時 • ふとMCMCしたくなった時 • ふと前処理したくなった時 • ふと機械学習したくなった時 • ふと集計したくなった時 • ふと社会科学したくなった時 でも iris はもう飽きた → そんなときのために、 誰でも使えるデータをご紹介 3 5. おもしろいと思った
はじめに 最近はAIや機械学習などの単語がビジネスで流行っていて、世はAI時代を迎えている。QiitaやTwitterを眺めているとその影響を受けて、世の多くのエンジニアがAIの勉強を始め出しているように見受けられる。 さらに、近年では機械学習のライブラリも充実しており、誰でも機械学習を実装することができる良い時代になってきた。 その一方で、特徴選択を行い精度を向上させたり、機械学習の出した答えがどの特徴に基づいて判断されたのかを理解したりするには、モデルに対する理解やテクニックが必要となる場合も多々ある。複雑なモデルになると人間には解釈が困難で説明が難しい。近頃流行りのDeep Learning系のモデルだと頻繁に「なんかよくわからないけどうまくいきました」となっていると思う。 一般的なエンジニアとしては、この点が割と課題なんじゃないかと勝手に思っている。というか、私が課題に感じている。
Cloudera World Tokyo 2016 有賀発表 データサイエンスを含めたチームづくりと、機械学習を活かしたプロダクトの作り方について話しました。Read less
今年、機械学習の本を少なくとも一度は手にした人は多いのではないでしょうか。 数ページめくっていると、数式のオンパレードで、「うっ」てなって、静かに本を閉じてから数ヶ月。 すでに本棚の肥やしになっていたりしませんか? それは私です。これはイカンと思って 機械学習の本を理解するための高校数学のおさらいをしようよ!で、作りました。 誰が書くの? すでに、おさらいが終わった人、 これを機会におさらいを始めてみようと思った人、 おさらいする必要もなく理解している人、 一緒にこのアドベントカレンダーを作りませんか? 何を書いたらいいの? 得意な分野の説明をわかりやすく説明、三角関数とか行列とか統計とか・・・ 自分の勉強法の紹介 オススメの書籍やオススメ記事やオススメ勉強法の紹介 などなど 来年はもっと理解出来た状態で、機械学習と向き合う年にしましょう!
「機械学習」というワードになんとなく惹かれつつも、具体的にやりたいことがあるわけでもないので、手を動かすことなくただひたすら**「いつかやる」**ために解説記事やチュートリアル記事を集める日々を過ごしていたのですが、このままじゃイカン!と Machine Learning Advent Calendar に参加登録してみました。 が、やはり何もしないまま当日を迎えてしまったので、お茶濁しではありますが、せめて「機械学習ってどんな手法やライブラリがあって、どんな応用先があるのか?」というあたりをざっくり把握して最初に何をやるのか方向付けをするためにも、たまりにたまった機械学習系の記事をいったん整理してみようと思います。 #機械学習の概要 特定のライブラリや手法の話ではなく、機械学習全般に関する解説。 ##機械学習チュートリアル@Jubatus Casual Talks 冒頭に、 初めて機械学
(編注:2016/11/17、記事を修正いたしました。) ディープラーニングの分野でテクノロジの進化が続いているということが話題になる場合、十中八九畳み込みニューラルネットワークが関係しています。畳み込みニューラルネットワークはCNN(Convolutional Neural Network)またはConvNetとも呼ばれ、ディープニューラルネットワークの分野の主力となっています。CNNは画像を複数のカテゴリに分類するよう学習しており、その分類能力は人間を上回ることもあります。大言壮語のうたい文句を実現している方法が本当にあるとすれば、それはCNNでしょう。 CNNの非常に大きな長所として、理解しやすいことが挙げられます。少なくとも幾つかの基本的な部分にブレークダウンして学べば、それを実感できるでしょう。というわけで、これから一通り説明します。また、画像処理についてこの記事よりも詳細に説明
きっかけ この記事を書いた人のレベル 今回の読書プラン Python 環境の構築 インストール先の環境 Anaconda (Python 3) のインストール 科学計算に関するライブラリのインストール サンプルの実行に必要なライブラリのインストール サンプルの実行 サンプルコードを実行していて引っかかったところ 3章 12〜13章 Python の勉強 速習コースを読んでみた感想 きっかけ 機械学習の重要性は、それこそ「ビッグデータ」という言葉が出てきた頃からいろいろな人が訴えていますが、最近は特にツールが充実して、敷居が下がってきたように感じています。 そろそろ自分でも機械学習関係のツールを使えるようになりたいと思っていたのですが、そんなときに「具体的なコード例が多くて読みやすい」という本書の評判を聞いて、読み始めました。 Python機械学習プログラミング 達人データサイエンティストに
こんばんは。プログラマーのhakatashiです。2ヶ月ぶりですね。普段はpixivコミックやpixivノベルの開発を手伝っていますが、今回もそれとは全く関係ない話をします。 pixiv×機械学習 「機械学習」「深層学習」といった単語がプログラマーの間でも広く囁かれるようになって既に幾年月経とうとしています。ここpixivの開発陣においても、人口に膾炙する機械学習の輝かしい成果に関する話題は尽きることがなく、常に最新のトピックに目を光らせています。 そんな取り組みの一環として、今回は弊社が運営するpixivの小説機能の投稿データで機械学習を行ってみたので、簡単に紹介したいと思います。 ※この記事における「pixiv小説」とは「pixivの小説投稿機能およびそれによってpixivに投稿された小説」を指し、「pixivノベル」とは異なります。 word2vecとは 自然言語処理における機械学習
Yuta Kashino is the CEO of BakFoo, Inc., a company that provides a real-time data platform for enterprises. The document discusses BakFoo and Kashino's background in areas like Zope/Python and astrophysics. It also covers topics like okcupid's history and acquisition, how their matching algorithm works using SVD matrix factorization, and analysis of user data from books like Dataclysm.Read less
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く