クラウドエース株式会社 公式技術ブログです |仕事の依頼について▶ cloud-ace.jp/service/ |採用について▶ yoshidumi-group-recruit.com/ ※本サイトに掲載されている商品またはサービスなどの名称は、各社の商標または登録商標です
名刺管理アプリ作ってほしいといわれた それは2/22のお話。 ことの発端は別の部署からかかってきた一本の電話でした。 新規事業の部署でいろいろな取引先様と付き合いがあるものの、紙の名刺が非常に多く管理に困っているとのことのことです。 私は小売業に勤務しているしがない一社員で、現在Eコマースの戦略立案に関する部署に所属しています。 電話先の方は、以前一緒の部署で勤務したことがある方です。現在新規事業のプロジェクト推進をしており、冒頭のような課題感を持っているため既存の名刺管理アプリ導入を考えたのですが、あまりのお値段の高さに卒倒して私に藁をもすがる思いで連絡されたようです。 これまでのアプリは名刺の識別専門のAI()を使っていた 話を聞いてみたところ、 名刺の写真を撮る 会社名、部署名、名前、…など項目別にスプレッドシートへ記載される スプレッドシートに次の打ち合わせ日を記載しておくと通知さ
承前。 goldhead.hatenablog.com おれは761,000文字ある英文の小説を、AIに翻訳させたいと思った。思って、やり方をChatGPT3.5に聞いて、Pythonがいいという。はて、Python、なんだかわからんが、そのインストールから始めたのが昨日の朝。 とにかく、テキストファイルにある英文をChatGPTにハードボイルド風の日本語に翻訳させたい。ただ、一度に送信できるテキストの量(トークン)は限られているので、自動的に限度内の送信を繰り返して、その返信を受取る。受取ったテキストを結合させて一つの日本語テキストファイルにする。それでおれはクヌート・ハムスンの『土の恵み』を読める。これである。 Growth of the Soil by Knut Hamsun | Project Gutenberg で、上の記事にあるように、行き詰まったのが「AttributeErr
日本時間未明(午前三時)ものすごいスピードで語られたOpenAI初の開発者向けイベントDevDayで発表されたGPT-4-TurboとGPT-3.5-TurboによるJSONモード。 これはものすごく強力なんだけど、Python APIによる使い方がどこにも描いてないので試行錯誤の末見つけましたので共有いたします。 from openai import OpenAI import openai import os openai.api_key = "<APIキー>" client = OpenAI() def gpt(utterance): #response = openai.chat( response = client.chat.completions.create( #model="gpt-4-1106-preview", model="gpt-3.5-turbo-1106", r
Editor's Note: This is another installation of our guest blog posts highlighting interesting and novel use cases. This blog is written by Shroominic who built an open source implementation of the ChatGPT Code Interpreter. Important Links: GitHub RepoIn the world of open-source software, there are always exciting developments. Today, I am thrilled to announce a new project that I have been working
こんにちは! 逆瀬川(@gyakuse)です! 前回はOpenAIが公開しているChat APIとWhisper APIを用いて議事録文字起こしアプリケーションを作ってみました。今回は、Chat APIを便利に使うためのライブラリであるLangChainとguidanceを紹介していきます。 なぜ便利に使うためのライブラリが必要なのか? 単純にChat APIにリクエストを送るだけであれば、各言語に用意されたライブラリを使うだけで良いでしょう。たとえば、Pythonにおいてはopenai-pythonが用意されています。前回紹介したとおり、Chat APIを使うだけなら以下のようなリクエストを作るだけで済みます。 import openai openai.api_key = "sk-..." # APIキー completion = openai.ChatCompletion.create
はじめに 本記事では、ChatGPT と LangChain の API を使用して、PDF ドキュメントの内容を自然言語で問い合わせる方法を紹介します。 具体的には、PDF ドキュメントに対して自然言語で問い合わせをすると、自然言語で結果が返ってくる、というものです。 ChatGPT と LangChain を使用することで、下記のような複数ステップの仕事を非常に簡単に実行させることができます。 PDF ドキュメントからテキストを抽出して複数に分割する 分割したテキストからテキスト間の関連を表すベクターデータを作成する 作成したベクターデータをベクターストアに格納しておく ChatGPT に外部から与えたベクターストアを使って問い合わせに答えるようにさせる これにより、大量の PDF ファイルを自動的に解析し、必要な情報を素早く抽出できるようになります。 本記事では、ChatGPT と
ガジェット全般、サイエンス、宇宙、音楽、モータースポーツetc... 電気・ネットワーク技術者。実績媒体Engadget日本版, Autoblog日本版, Forbes JAPAN他 コンピューターはプログラムコードで動作しますが、このコードは人間が記述している以上、どうしてもエラーを含んでしまうことが避けられません。 しかし、最近は大規模言語モデルを使ったGPTなどジェネレーティブAIの急速な進歩により、目的とする処理を文章として渡すだけで、AIがある程度プログラムコードを出力できるようになってきました。 そして、BioBootloaderと名乗る開発者による新しい試みでは、プログラム開発の際にどうしても必要となるデバッグ作業を、GPT-4をベースとするAIで行うことを可能にしました。このツールは、プログラムを自動修正することから、似た能力を持つアメコミヒーローにちなんで「Wolveri
研究室のSlackチャンネルに最新の論文を共有してくれるbotがあれば、議論をもっと活発化できるのでは?と思ったので試しに作ってみました! 目標 こんな感じで、時間通りにarxiv論文を要約したものをシェアしてくれるSlackbotを作ります。 手順 SlackBotのためのAPIトークンを生成 OpenAIのAPIを取得 Pythonコードを作成 Google Cloud Platform(GCP)で実行を自動化 完成! 1. SlackBotのためのAPIトークンを生成 Slack APIのページからbotを作成する必要があります。 この方の記事で詳しいやり方が紹介されているので、参考にしながらアプリ作成、APIトークン生成、ワークスペースにアプリをインストール、メッセージ送信のテストまでやってみてください。 2. OpenAIのAPIを取得 今回は取得した論文を要約するために、Cha
こんにちは!逆瀬川( https://twitter.com/gyakuse ) です! 今日は公開されたばかりのChatGPT APIを使ってAIキャラクターを作ってみます。 概要 ChatGPT APIを使ってAIキャラクターを作る 嬉しいところ 以前のOpenAIのGPT-3.5系のAPIは $0.0200 / 1K tokens で、だいたい1000文字で3〜5円くらいでした。 今回のChatGPT APIは $0.002 / 1K tokens であるため、1/10のやすさになっています。 また、規約が更新され、APIを使ったinput/outputは学習対象外(オプトアウトがデフォルト)となりました。 DPAの締結(OpenAIの書式に従う必要があります)も可能になっているためより以前よりは守秘性の高いコミュニケーションに使用できる可能性があります。 Colab 実装 会話を行
ChatGPTが話題沸騰ですね。今回はエヴァンゲリオンに登場するMAGIシステムをGPT-3のAPIで実装した有料記事を書いてみました。ぜひチェックしてみてください!(サンプルコードはPython) MAGIシステムを一言で言うと 性格の異なる3体のAIが、それぞれ独立に見解をだし、それを集約して1つの結論をだすという合議制のシステム エヴァのMAGIシステムをGPT3で作ってみた 深津氏の記事に触発され、GoogleColabで実装してみました。(面白い記事を書いてくれた深津氏に感謝です。)詳しくは↓ 以下が手順 OpenAIのアカウントにログイン。 2.API keysを発行しましょう。 ここからがコード。 3.openaiをインストール pip install openai4.まずはサンプルコードで疎通確認をしましょう。ちなみに、今回使用するコードは以下の繰り返しになります。 imp
OpenAI が提供している ChatGPT は非常に面白いですね。今年以後、GPTやChatGPT周りがさらに流行ると思います。 この記事は、TypeScriptでChatGPTクローンを作る第一弾です。長くなりすぎるため、この記事では、GPTを使った検索エージェントを実行するまでを取り上げます。 検索エージェントは「ぼっち・ざ・ろっくの作者は?」と尋ねたら検索エンジンとGPTを使って「はまじあき」という結果を生成できる技術です。 またこの記事や、続く記事でLangChainのプロンプトをあれこれ読み解いていこうと考えています。 筆者は機械学習の初心者であるため、間違ったことが書かれている可能性があります。間違いがあった場合は、ぜひご指摘いただけると幸いです。 なお、この記事では添削にChatGPTおよびGPT-3.5を使っています[1]。 どうやってTypeScriptでChatGPT
やったこと 「午後から雨予報なのに、天気予報を見逃していて、家を出る時に傘を持って行くのを忘れてしまった!」 そんな経験はありませんか?(私はよくあります。朝に晴れている時によくやります 😇)というわけで今回は、雨の予報を絶対に見逃さないように、午後の降水確率に応じて廊下のライトの色を変える機能を作ってみました。さすがにライトの色が違えば気づくはず! スマートライトは SwichBot のライトを利用します。API経由で色を制御可能で、それでいて他社製のスマートライトより値段が安いのでオススメです。 完成イメージ 以下のイメージのように、降水確率が高くなるにつれてライトが青くなっていきます。これを毎朝7時に定期実行し、その時点での午後の降水確率を取得してライトを点灯させます。 スマートライトの点灯イメージ 実装の流れ 以下のような流れで実装します。スマートライトの初期登録は完了済みとしま
2024年11月現在の最新の構成に関する記事をこちらに書きました。 よろしければそちらもご参照下さい。 (Qiita の本記事は、2022年4月時点の構成に関しての記事で、多少古い内容が含まれています。) 個人開発で 賃貸物件の検索サービス Comfy を作りました1。グラフや地図でサクサク絞り込める UI が特徴のサービスです。とにかく気持ち良い使い勝手を実現するために色々工夫しています。 既にリリースからは 4 ヶ月以上経っているのですが、改めてサービスの概要や、システム構成及び使用した技術・サービスをご紹介しようと思います。2。 サービスの概要 Comfy は日本全国の賃貸物件を検索できる Web サービス です。画面 UI は上の GIF 画像のような感じです。 こだわったポイントを色々書くよりも実際にさわって頂いた方が新感覚の UI や気持ちよさを体感頂けるかと思いますので、 実
目次 はじめに 2Captchaとは 2Captchaの使用準備 Python+Selenium+2Captchaで『reCAPTCHAv2』を突破 さいごに 参考 はじめに スクレイピングやブラウザ操作の自動化タスクにおける一番の難所は各種キャプチャの突破だと思います。そもそもキャプチャ機能はロボット操作されないために設置するものなので,それを突破しようとする時点でどうなのという気はしますが,それでもなんとかしたいと思うことがあります。そんなときの解決方法として「2Captcha」というサービスがあります。 最近このサービスを知り利用してみたところ,あまりに簡単にキャプチャ突破できたので,ここで紹介しようと思います。 ※ ご利用は自己責任でお願いします。くれぐれも悪用しないように。 2Captchaとは ロシアの会社が提供するキャプチャ機能を突破するためのサービスです。 2Captcha
機械学習やDeep Learningで日々腕を磨いている皆さん、一度は競馬やFXの予測で儲けてみたいと思った事はありませんか? 競馬やFXを機械学習やDeep Learningのモデルで予測してみることは非常にいい勉強・経験になるのでオススメです。 この投稿ではPyhonでFXの自動売買を動かすのに最適なOanda APIについて紹介したいと思います。 Oanda APIとは Oandaという会社が提供しているFXの自動売買のためのAPIです。 個人でも利用できるAPIを提供している会社は少ないのですが、OandaはpythonからAPIを利用するためのパッケージ(oandapyV20)も存在しており、pythonユーザにとっては非常に使い易いサービスとなっています。 APIを利用するには、Oanda社で口座を登録して、APIのためのトークンを発行してもらう必要があります。 デモ環境であれ
概要 Google翻訳APIをPythonで実行するでは、四苦八苦しながらも、Google翻訳APIにより、テキストファイルに書かれた英文を日本語に翻訳するPythonスクリプトを書いた。 元々の動機は論文の翻訳する際に、ちまちまGoogle翻訳にコピペするのが面倒くさいということであった。 そこで今回は、Pythonスクリプトを拡張し、PDFの論文を一気に翻訳するようにしたので共有したい。 そもそもなんで日本語に翻訳して論文を読むの? もちろん、細かい内容は原文を精読する必要がある。そりゃそうだ。 日本語で読む理由はなんといっても、論文の内容を俯瞰的に把握できるということに尽きる。 俯瞰的に把握できることで、以下のメリットがある。 俯瞰的に把握した上で原文を読むことになるため、より早く理解することができる。 俯瞰的に把握できるため、原文を読む前に、自分にとって読む必要がある論文かどうかか
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く