『MarkeZine』が主催するマーケティング・イベント『MarkeZine Day』『MarkeZine Academy』『MarkeZine プレミアムセミナー』の 最新情報をはじめ、様々なイベント情報をまとめてご紹介します。 MarkeZine Day
この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。 適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2017年11月) セレンディピティ(英語: serendipity)とは、素敵な偶然に出会ったり、予想外のものを発見すること[1]。また、何かを探しているときに、探しているものとは別の価値があるものを偶然見つけること。平たく言うと、ふとした偶然をきっかけに、幸運をつかみ取ることである。 「serendipity」という言葉は、イギリスの政治家にして小説家であるホレス・ウォルポール[注 1]が1754年に生み出した造語であり、彼が子供のときに読んだ『セレンディップの3人の王子 (The Three Princes of Serendip)』という童話にちなんだものである。セレンディップとはセイロン島、現在のスリ
レコメンデーションの虚実(5)~「もうちょっとだけ環境の良い場所ない?」をアルゴリズムに持ち込む方法:ソーシャルメディア セカンドステージ(2/2 ページ) ファジーなレコメンデーションに挑戦するベンチャー このアプローチを試みているベンチャー企業の例を挙げてみよう。「リコメンデーションの専門企業」を掲げている株式会社ALBERT(アルベルト)は、インターネットの市場調査会社インタースコープ(現:ヤフーバリューインサイト)でレコメンデーションの開発を行っていた上村崇社長らが、通販大手のニッセンなどからの出資を受けて2005年に設立した企業である。 ALBERTの運営するサイト「教えて!家電」では、商品を購入しようと考えた人が、スペックを気にしないでレコメンデーションを受けられるというサービスを提供している。 例えばこのサイトの「家電選びナビゲータ」で、デジタルカメラを選択してみる。最初に「
無効なURLです。 プログラム設定の反映待ちである可能性があります。 しばらく時間をおいて再度アクセスをお試しください。
無効なURLです。 プログラム設定の反映待ちである可能性があります。 しばらく時間をおいて再度アクセスをお試しください。
データ分析から導き出されたインサイト無しにAI(人工知能)の活用は始まりません。私たちは、各業界知識とデータ・アナリティクス技術を駆使しデータドリブン経営を強力に支援します。 データ、アナリティクス、AIは企業にとって競合他社との差別化を図るかつてないほど大きな要因になっています。今日の経営幹部が効率を向上しながら新たな収益源を開拓し、新しいビジネスモデルをタイムリーに構築する方法を模索する中、価値を生み出し成長を続ける企業には「データ活用」という共通項があります。私たちは、無数のデータから企業にとって本当に必要なデータを活用するための方法を知っています。 将来を見据えたオペレーション体制を備えている企業の半数以上(52%)は、すでにデータとアナリティクスを大規模に活用しています。データとAIに関する取り組みをビジネス戦略に沿って実施することで投資利益率を迅速に最大化し、最終的にはAIをビ
データ分析から導き出されたインサイト無しにAI(人工知能)の活用は始まりません。私たちは、各業界知識とデータ・アナリティクス技術を駆使しデータドリブン経営を強力に支援します。 データ、アナリティクス、AIは企業にとって競合他社との差別化を図るかつてないほど大きな要因になっています。今日の経営幹部が効率を向上しながら新たな収益源を開拓し、新しいビジネスモデルをタイムリーに構築する方法を模索する中、価値を生み出し成長を続ける企業には「データ活用」という共通項があります。私たちは、無数のデータから企業にとって本当に必要なデータを活用するための方法を知っています。 将来を見据えたオペレーション体制を備えている企業の半数以上(52%)は、すでにデータとアナリティクスを大規模に活用しています。データとAIに関する取り組みをビジネス戦略に沿って実施することで投資利益率を迅速に最大化し、最終的にはAIをビ
データ分析から導き出されたインサイト無しにAI(人工知能)の活用は始まりません。私たちは、各業界知識とデータ・アナリティクス技術を駆使しデータドリブン経営を強力に支援します。 データ、アナリティクス、AIは企業にとって競合他社との差別化を図るかつてないほど大きな要因になっています。今日の経営幹部が効率を向上しながら新たな収益源を開拓し、新しいビジネスモデルをタイムリーに構築する方法を模索する中、価値を生み出し成長を続ける企業には「データ活用」という共通項があります。私たちは、無数のデータから企業にとって本当に必要なデータを活用するための方法を知っています。 将来を見据えたオペレーション体制を備えている企業の半数以上(52%)は、すでにデータとアナリティクスを大規模に活用しています。データとAIに関する取り組みをビジネス戦略に沿って実施することで投資利益率を迅速に最大化し、最終的にはAIをビ
【新連載】レコメンデーションの虚実(1)~認知限界をどう乗り越えるのか:ソーシャルメディア セカンドステージ(1/2 ページ) ネット情報増大と認知限界 インターネットの情報は、今や洪水のようになっている。この洪水の中からどのように有用なコンテンツやデータをすくい上げるのかは、インターネットにおける最も重要なテーマだ。この問題を解決するアーキテクチャとしては検索エンジンが長く定番だったが、情報のオーバーロード(過負荷)が起きている中で、検索エンジンだけでは対応しきれなくなった。 つまりはネットの情報の総体が、人間の認知能力をはるかに超えてしまっているということだ。これを「認知限界」という。認知限界というのはもともと、1978年にノーベル経済学賞を受賞したアメリカの経営学者、ハーバート・アレクサンダー・サイモンが企業などの組織を説明するために使った言葉である。外の世界がどんどん複雑になってく
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く