最近の論文で The Learning Behind Gmail Priority Inbox D.Aberdeen, O.Pacovsky & A.Slater というのがある。これはGmailの優先トレイで使っている機械学習のアルゴリズムについて解説したもの。というと難しそうな印象があるが、この論文で紹介されているPassive-Aggressiveという手法は実装がとても簡単。なので今回はこれについて解説するよ。 参考資料: Gmail - 優先トレイ Online Passive-Aggressive Algorithms K.Crammer et al. The Learning Behind Gmail Priority Inbox読んだメモ - 糞ネット弁慶 わかりやすい日本語解説 機械学習超入門 〜そろそろナイーブベイズについてひとこと言っておくか〜 - EchizenBl
動的計画法とメモ化再帰 今回は、非常によく用いられるアルゴリズムである、「動的計画法」「メモ化再帰」について説明します。この2つはセットで覚えて、両方使えるようにしておくと便利です。 なお、メモ化再帰に関しては、第5・6回の連載の知識を踏まえた上で読んでいただけると、理解が深まります。まだお読みになっていない方は、この機会にぜひご覧ください。 中学受験などを経験された方であれば、こういった問題を一度は解いたことがあるのではないでしょうか。小学校の知識までで解こうとすれば、少し時間は掛かるかもしれませんが、それでもこれが解けないという方は少ないだろうと思います。 この問題をプログラムで解こうとすると、さまざまな解法が存在します。解き方によって計算時間や有効範囲が大きく変化しますので、それぞれのパターンについて考えます。 以下の説明では、縦h、横wとして表記し、プログラムの実行時間に関しては、
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く