タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

システムトレードと機械学習に関するdencygonのブックマーク (5)

  • 異常検知ライブラリを作ってみた - Fire Engine

    今回の記事は、前職消防士でゼロからプログラミングを始めた超未熟者の私が、異常検知ライブラリを作った話です。 なぜ作ったか マインド的背景 消防士を辞めてエンジニア転職してから1年、いろんな技術に触れました。TensorFlow、scikit-learn、Dockerなどなど、必死になって使い方を覚えました。しかしだんだん、「これ、コマンド覚えてるだけで自分に何も技術身についてなくない?」という疑問や焦りが湧いてきて、自分は便利なツールを使いこなせるようになりたいんじゃなくて、いつの日かみんなが使って便利なツールを作る側になりたいんだ、ということに気づきました。そのような思いから今回初めてライブラリを作り、公開してみました。 データサイエンス的背景 世の中は時系列データで溢れています。ビジネスの場において、データの何かしらの変化の兆候を捉えて、いち早く意思決定をしたいという場面がよくありま

    異常検知ライブラリを作ってみた - Fire Engine
  • 金融工学のための遺伝的アルゴリズム / 伊庭研究室

    ソフトウェア等のご利用にあたって このソフトウェア等は伊庭研究室が作成し、無償で配布しているものです。出版社が提供するサービスではありません。 このソフトウェア等の著作権は、伊庭研究室が保持しています。ダウンロードしたソフトウェア等を再配布することはできません。 このソフトウェア等に起因するいかなる損害に対しても、伊庭研究室は何ら責任を負いません。 伊庭研究室は予告なくソフトウェア等の内容を更新したり、提供を中止することがあります。 配布ソフトウェア LGPC for Time series prediction:GPを用いた株価や金融データの予測を実験できます。 多目的最適化シミュレータ:多 目的最適化問題に対してパレート最適化を実験できます。 ポートフォリオ最適化シミュレータ: ナスダックのデータをもとにしてポートフォリオ構築を実験できます。 STROGANOFFシミュレータ(Patt

  • 機械学習の手法 - これからの「お金」の話をしよう

    AI投資の話が続いていますが、ご容赦下さい(そろそろ終わりにしたいと思います)。 最近はシステムトレーダーの方で機械学習を使っている方、もしくは手を出そうとしている方が増えてきているのでは、と思います。コラムでは主だった機械学習の手法についてまとめてみたいと思います。なお、以下の内容は様々な解釈が存在するので一例として考えていただくほうがよいと思います。 wikiによると機械学習という言葉のそもそもの定義は、「明示的にプログラムしなくても学習する能力をコンピュータに与える研究分野」となっています。しかし私は、そもそもの語源は機械学習machine learning)ではなく、機械的学習(mechanical learning)ではなかったのかなぁ、と思います。つまり機械による学習ではなく、予めプロセスを定義し固定した機械的な反復学習ということです。まあ人工知能機械学習の括りは曖昧であ

    機械学習の手法 - これからの「お金」の話をしよう
  • 3000万円稼いだAI投資手法を公開する - これからの「お金」の話をしよう

    私は現時点でおよそ1億ほどの資金を運用しています。 毎日、信用3倍をフルインベストメントしているため、日々の売買代金は3億近くになります。 日々の取引にはAIを使っています。 ここでいうAIとは、人工知能というよりも機械学習と呼んだ方がよいと思います。 今回は、私がどのようなAI手法を使っているか公開してしまいます。 関連コラム: we.love-profit.com 1.利益曲線と口座残高推移 (1)利益曲線 まずは利益曲線を示します。 AI手法を用いたこの投資戦略は、2016年2月22日より運用を開始しました。 ちょうどその直前の2016年1月~2月にチャイナショックが発生しており、 そのショックで私は1000万円の損失を出していました。 この手法はその損失をリカバリするための戦略として運用を開始したものです。 図1.AI投資手法の利益曲線 2017年9月の時点での累積利益はおよそ30

    3000万円稼いだAI投資手法を公開する - これからの「お金」の話をしよう
  • TensorFlow (ディープラーニング)で為替(FX)の予測をしてみる CNN編 - Qiita

    前回までRNN(LSTM)や他の識別器で為替の予測を行ってきましたが、今回はCNNで予測をしてみたいと思います。 第1回 TensorFlow (ディープラーニング)で為替(FX)の予測をしてみる 第2回 ディープじゃない機械学習で為替(FX)の予測をしてみる データの準備 前回まで終値の差分を学習データとしていましたが、今回は終値そのものを学習データにしてみます。 また、今回はUSDJPYの1時間足、2008年1月1日〜2017年3月10日を利用し、前半95%を学習、後半5%をテスト(バリデーション)としました。 CNNは画像認識で高い精度を発揮していますが、画像以外でも応用することは可能です。例えば終値が以下のようなデータがあったとします。 これを画像に変換します。 このように1次元の画像と見なすことができます。 色が複数チャネルあるように見えますが実際はグレースケールです。カラーマッ

    TensorFlow (ディープラーニング)で為替(FX)の予測をしてみる CNN編 - Qiita
  • 1