結合律を満たす積 × の定義される集合 M の元の列 a1, a2, …, an の総乗を などと表す。記号 ∏ はギリシャ文字のパイ (Pi) であり、これは積 (Product、ギリシャ語でΠροϊόν) の頭文字 P に相当する文字である。 有限集合 E に対し、E の濃度を n とする。このとき、E の元を I = {1, 2, …, n} で添え字付けて、E の元の全体を「I を添え字集合とする元の列 (xi)i∈I 」とすることができる。この列の総乗を などのように表す。ここで、E の濃度が 0、すなわち、添え字集合 I が空集合であってもよい。特に、集合 M が積 × に関する単位元 1M を持つとき、空集合を添え字集合とする列(空な列)の総乗は 1M であるとする。(空積も参照) 積が結合的でないならば、積をとる順番が問題になるので、a1 × a2 × … × an という