タグ

clusteringに関するe-kurodaのブックマーク (6)

  • 軽量データクラスタリングツールbayon - mixi engineer blog

    逆転検事を先日クリアして、久しぶりに逆転裁判1〜3をやり直そうか迷い中のfujisawaです。シンプルなデータクラスタリングツールを作成しましたので、そのご紹介をさせていただきます。 クラスタリングとは クラスタリングとは、対象のデータ集合中で似ているもの同士をまとめて、いくつかのグループにデータ集合を分割することです。データマイニングや統計分析などでよく利用され、データ集合の傾向を調べたいときなどに役に立ちます。 例えば下図の例ですと、当初はデータがゴチャゴチャと混ざっていてよく分からなかったのですが、クラスタリングすることで、実際は3つのグループのデータのみから構成されていることが分かります。 様々なクラスタリング手法がこれまでに提案されていますが、有名なところではK-means法などが挙げられます。ここでは詳細については触れませんが、クラスタリングについてより詳しく知りたい方は以下の

    軽量データクラスタリングツールbayon - mixi engineer blog
  • IIR の階層的クラスタリングを試す (nakatani @ cybozu labs)

    Pathtraq で Web ページの自動分類を手がけてみて。 Web ページは日々どんどん変わっていくのでフィルタは常に更新されなければいけないんですが、そのためには適切なタイミングに、適切な学習データを用意しなければならない。大変。 メンテナンスフリーが理想ですが、もちろん難しい。 現実的なところとしては「追加学習が必要なことを検知して、適切な学習データの候補を提案してくれる」というものが作りたいなあ……などなど考えているわけです。 そこらへんも含めて、自然言語処理とか機械学習とかそこら辺のお勉強をしてるんですが、実際に手を動かさないとわかんないですよねー。 というわけで、 "Introduction to Information Retrieval" の Chapter 17 "Hierarchical clustering" に沿って、ドキュメントの分類器を作ってみました。 ポイン

  • 統計的機械学習(Hiroshi Nakagawa)

    統計的機械学習 (under construction) 導入ppt pdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 次元の呪い 損失関数, bias, variance, noise 数学のおさらいppt pdf 線形代数学で役立つ公式 情報理論の諸概念 (KL-divergenceなど) 指数型分布族、自然共役 正規分布(条件付き、および事前分布) 評価方法ppt pdf 順位なし結果の評価(再現率、精度、適合率、F値) 順位付き結果の評価 線形回帰と識別ppt pdf 線形回帰 正規方程式 正規化項の導入 線形識別 カーネル法ppt pdf 線形識別の一般化 カーネルの構築法 最大マージン分類器 ソフトマージンの分類器 SVMによる回帰モデル SVM実装上の工夫 モデル推定ppt pdf 潜在変数のあるモデル EMアルゴリズム 変分ベイズ法 Expecta

  • k-means++を試し中 - のんびり読書日記

    http://d.hatena.ne.jp/kaiseh/20090113/1231864089 上の記事を見て、k-means++が面白そうだったので、ちょっとだけ試してみた。 k-meansは初期値に大きく依存するところが嫌い。初期値への依存度を軽減するために、初期値を変えて何回か試行してその中で一番良い結果のものを使用する、なんてことをしないといけない。そのため処理時間も馬鹿にならなくなってしまうので、ちょっとこれじゃあなあ…ということで使ってなかった。 でも今回のk-means++は初期値をうまく求めることで、精度と速度の向上が得られるらしい。これはうれしい! 論文著者のページにサンプルコードがあったので試してみようと思ったんだけど、MFCを使っているみたいで僕の環境ではコンパイルできず…。 http://www.stanford.edu/~darthur/kMeansppTest

    k-means++を試し中 - のんびり読書日記
  • クラスタリング (クラスター分析) - Toshihiro Kamishima

    クラスタリング (clustering) とは,分類対象の集合を,内的結合 (internal cohesion) と外的分離 (external isolation) が達成されるような部分集合に分割すること [Everitt 93, 大橋 85] です.統計解析や多変量解析の分野ではクラスター分析 (cluster analysis) とも呼ばれ,基的なデータ解析手法としてデータマイニングでも頻繁に利用されています. 分割後の各部分集合はクラスタと呼ばれます.分割の方法にも幾つかの種類があり,全ての分類対象がちょうど一つだけのクラスタの要素となる場合(ハードなもしくは,クリスプなクラスタといいます)や,逆に一つのクラスタが複数のクラスタに同時に部分的に所属する場合(ソフト,または,ファジィなクラスタといいます)があります.ここでは前者のハードな場合のクラスタリングについて述べます.

    クラスタリング (クラスター分析) - Toshihiro Kamishima
  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

  • 1