タグ

機械学習に関するesakenのブックマーク (5)

  • ノンパラベイズのあれこれ - yasuhisa's blog

    自分用メモ。超基礎的なこと。書くのが躊躇されるレベルだが、書かないと忘れる。全部は書かない、自分が必要なところだけ。 ディリクレ過程(Dirichlet Process; DP)を使ったようなモデルを自分で実装する必要が出てきた。今までは必要でなければ必ずしもDP使う必要ないじゃんという感じでいたが、今回はDPが質的に必要な場面のような気がするので、頑張る。基的には上田さん、山田さんの資料を見ながら話を進めていく。 ノンパラメトリックベイズモデル やりたいこと(というか初期ステップ)。超単純。コーパス全体を一つの文書と見なす&bag of wordsの状態で単語をクラスタリングする(クラスタ数は∞)。LDAの拡張っぽくdocumentごとにtopic propotionが...ということをやろうかと思っていたのだが、それをちゃんとやろうとするとHierarchical Dirichle

  • はてなグループの終了日を2020年1月31日(金)に決定しました - はてなの告知

    はてなグループの終了日を2020年1月31日(金)に決定しました 以下のエントリの通り、今年末を目処にはてなグループを終了予定である旨をお知らせしておりました。 2019年末を目処に、はてなグループの提供を終了する予定です - はてなグループ日記 このたび、正式に終了日を決定いたしましたので、以下の通りご確認ください。 終了日: 2020年1月31日(金) エクスポート希望申請期限:2020年1月31日(金) 終了日以降は、はてなグループの閲覧および投稿は行えません。日記のエクスポートが必要な方は以下の記事にしたがって手続きをしてください。 はてなグループに投稿された日記データのエクスポートについて - はてなグループ日記 ご利用のみなさまにはご迷惑をおかけいたしますが、どうぞよろしくお願いいたします。 2020-06-25 追記 はてなグループ日記のエクスポートデータは2020年2月28

    はてなグループの終了日を2020年1月31日(金)に決定しました - はてなの告知
  • PRML 読んでやってみた(上巻編) - 木曜不足

    今までに書いた「 PRML を読んで、やってみた」系の記事をまとめてみた。何か参考になれば幸い。 根的にとても疑り深い人(教科書の類に対しては特に)なので、「こんなん書いてあるけど、ほんまかいな〜?」という姿勢が目立つ。 また、よく「手触り」という言葉が出てくる。なんというか、「感触」がわからないと気持ち悪いのだ。基的な道具類は目をつむっていても使えるのが理想、と言えば、なんとなくでもわかってもらえるだろうか。 あと、言葉使いに無駄に小うるさい(苦笑)。多くの人にとってはどうでもいいところで妙にこだわっているかも。 下巻編はこちら。 PRML 読んでやってみた(下巻編) http://d.hatena.ne.jp/n_shuyo/20110519/prml 1章&2章 特に実装とかしてない。 ディリクレ分布のパラメータが0のとき http://d.hatena.ne.jp/n_shuy

    PRML 読んでやってみた(上巻編) - 木曜不足
  • 機械学習超入門II 〜Gmailの優先トレイでも使っているPA法を30分で習得しよう!〜 - EchizenBlog-Zwei

    最近の論文で The Learning Behind Gmail Priority Inbox D.Aberdeen, O.Pacovsky & A.Slater というのがある。これはGmailの優先トレイで使っている機械学習のアルゴリズムについて解説したもの。というと難しそうな印象があるが、この論文で紹介されているPassive-Aggressiveという手法は実装がとても簡単。なので今回はこれについて解説するよ。 参考資料: Gmail - 優先トレイ Online Passive-Aggressive Algorithms K.Crammer et al. The Learning Behind Gmail Priority Inbox読んだメモ - 糞ネット弁慶 わかりやすい日語解説 機械学習超入門 〜そろそろナイーブベイズについてひとこと言っておくか〜 - EchizenBl

    機械学習超入門II 〜Gmailの優先トレイでも使っているPA法を30分で習得しよう!〜 - EchizenBlog-Zwei
  • 統計的機械学習セミナー (1) sequence memoizer - 木曜不足

    統計数理研究所にて行われた第2回統計的機械学習セミナーにのこのこ参加してきました。 http://groups.google.com/group/ibisml/browse_thread/thread/092f5fb3d45a91ea/8cae858cb8bfc00c 今回はノンパラメトリックベイズ特集ということでか、Yee Whye Teh さんが sequence memoizer を、持橋さんが教師無し&半教師分かち書きを話されたので、まずは sequence memoizer について自分のわかる範囲で書いてみよう。 まず、Pitman-Yor 過程については既知とする。ご存じない方は、「独断と偏見によるノンパラ入門」を読めばだいたいわか……んないか(苦笑)。 ええと、とりあえず今回必要な範囲で説明すると、G という単語の分布(ただし台は無限。つまり「独断と偏見〜」でいう「その他」

    統計的機械学習セミナー (1) sequence memoizer - 木曜不足
  • 1