こんにちは、AIチームの戸田です 今回は去年Google検索に導入されたことでも話題になったBERTを使った比較実験の記事を書かせていただきます というのも昨年発表報告を書かせていただいた第10回対話シンポジウム、参加して特に印象に残ったことの一つとして、文章をベクトルに変換するモデルとして BERT^1 を使用するのが当たり前になっていたことがあります 私が遅れているだけなのかもしれませんが、とりあえず文章をベクトル化するときはBERTという雰囲気で、Word2Vecで得られた単語ベクトルをコネコネ…とやっているのは(おそらく)今回の会議では私達だけだったと思います BERTはファインチューニングにより自然言語処理の多くのタスクでState of the artを達成しましたが、単純な文書ベクトル抽出器としての能力はどうなんでしょうか? 私は手軽に文章の分散表現を得る方法としてWord2