タグ

ブックマーク / staff.aist.go.jp (5)

  • 一杉裕志

    **************************************** この業務用個人 web ページの中身およびレイアウトを近々大幅に整理する予定です。 なお、数年後には完全閉鎖予定ですのでご注意ください。 **************************************** 研究テーマ: 脳型汎用人工知能アーキテクチャの研究開発 人間のような知能を持つ機械を実現する最も確実な方法は、脳の動作原理を解明し、それを模倣することです。 私は自ら再帰的に目標を設定する強化学習 RGoal を用いた脳型汎用人工知能(AGI)アーキテクチャの構築を目指しています。 また、計算論的神経科学の分野で知られている大脳皮質に関する知見をヒントにした BESOM と呼ぶ 機械学習アルゴリズムの開発も行っています。 BESOM は複数の機械学習技術 (自己組織化マップ、ベイジアンネット、

    fatrow
    fatrow 2012/04/29
  • 脳の情報処理原理の解明状況

    AIST07-J00012 http://staff.aist.go.jp/y-ichisugi/j-index.html 2008 3 31 BESOM BESOM 1 1 7 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 . . . . . . . . . . . . . . . . .

  • 脳とベイジアンネット

    ベイジアンネットを用いて大脳皮質の機能を再現するモデルが少しづつ増えています。 ベイジアンネットは大脳皮質の複雑で多様な振る舞いを少ない仮定で計算論的にきれいに説明するだけでなく、アルゴリズムやデータ構造、それらを実現する神経回路にいたるまで、大脳皮質に対する幅広く詳細な説明を与えつつあります。 ベイジアンネットに基づいて脳を理解することは、高い知能を持つロボットの実現に向けたブレークスルーになると考えています。 解説 「脳とベイジアンネットFAQ」 脳とベイジアンネットに関して私がよく聞かれる質問です。 「解説:大脳皮質とベイジアンネット」 日ロボット学会誌に載せていただいた解説です。(この pdf ファイルは日ロボット学会の著作物です。) 一杉裕志, 解説:大脳皮質とベイジアンネット、 日ロボット学会誌 Vol.29 No.5, pp.412--415, 2011. 「脳は計算機

    fatrow
    fatrow 2012/04/22
  • 脳とベイジアンネットFAQ

    脳の情報処理原理の解明の鍵となる技術が ベイジアンネットです。 しかし、大半の研究者は大脳皮質とベイジアンネットの鮮やかな対応について まだ知りません。 脳の情報処理原理に基づいた知能の高いロボットの実現に向け、 一人でも多くの神経科学者・計算機科学者に、 ベイジアンネットと大脳皮質の関係を知ってもらいたいと思います。 ベイジアンネットそのものについての質問 ベイジアンネットとは何ですか? ベイジアンネット(ベイジアンネットワーク 、 Bayesian network) とは、確率論に基づいた推論を効率的に行うための技術です。 脳の機能の1つである直観と似た働きをします。 ベイジアンネットは、複数の事象の間の因果関係をネットワーク構造で表現し、 同時に因果関係の強さを表す数値も記録したものです。 このように表現された「知識」を用いれば、得られた観測データに基づいて 様々な事象の確率を ベイ

    fatrow
    fatrow 2012/04/22
  • 脳とコンピュータとの違い

    脳と現状のコンピュータは、計算モデル、アーキテクチャ、 アルゴリズムなどいろいろな観点からみて違いがあります。 はたしてコンピュータの上で脳と同じ機能は実現できるのでしょうか。 実現を難しくする要因として何が考えられるでしょうか。 ◆計算モデルの違い 計算する機械を数学的に抽象化したものを計算モデルと呼びます。 チューリングマシンは計算モデルの1つです。 チューリングマシンとは数学的に異なる計算モデルとしては、 例えば非決定性チューリングマシン、 (理想的な)アナログコンピュータ、量子チューリングマシン (量子コンピュータのモデル)があります。 これらはチューリングマシンよりも強力だったり速かったりします。 さて、「脳の計算モデル」はチューリングマシンと等価でしょうか、 それともより強力だったり速かったりするのでしょうか。 非決定性チューリングマシンは並列度が無限の計算機です。 脳は超並列

  • 1