タグ

2014年8月5日のブックマーク (3件)

  • blog.takuti.me

    👋 Hi, I'm Takuya Takuya Kitazawa is a freelance software developer based in British Columbia, Canada. As a technologist specializing in AI and data-driven solutions, he has worked globally at Big Tech and start-up companies for a decade. At the intersection of tech and society, he is passionate about promoting the ethical use of information technologies through his mentoring, business consultatio

    blog.takuti.me
  • Web上の膨大な画像に基づく自動カラリゼーション - A Successful Failure

    2010年11月03日 Web上の膨大な画像に基づく自動カラリゼーション Tweet 以前『Web上の膨大な画像に基づく自動画像補完技術の威力』において、Web上の膨大な画像から欠損部分を自動的に補完する手法*1について紹介した(図1)。 図1:Scene Completion Using Millions of Photographs これは、Flickr等から大量にかき集めてきた画像から類似度の高い画像を自動的に抽出し、欠損部分にハメ込むことで違和感の無い補完画像を生成するアプローチであり、そのアイデアと、生成される補完画像のクオリティが話題になった。素材の量が質に変化する、まさにWeb時代に適したアプローチである。 エントリでは同様の手法を用いて、失われた色を取り戻すカラリゼーション(colorization)について紹介したい。カラリゼーションとはコンピュータを用いたモノクロ画像

  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure