タグ

algorithmとtechに関するh-hiraiのブックマーク (6)

  • 電力不要「“ゴム”コンピュータ」 伸縮により「0」と「1」をカウント【研究紹介】 レバテックラボ(レバテックLAB)

    山下 裕毅 先端テクノロジーの研究を論文ベースで記事にするWebメディア「Seamless/シームレス」を運営。最新の研究情報をX(@shiropen2)にて更新中。 オランダのライデン大学と研究機関AMOLFに所属する研究者らが発表した論文「Controlled pathways and sequential information processing in serially coupled mechanical hysterons」は、ゴムを使った構造物を用いて、エレベーター、自動販売機、改札口、洗濯機などのデバイスに用いられる単純な電子計算タスクを実行できることを示した研究報告である。 従来の電子機器では、複雑な回路を構成する多数の要素を用いてデジタルビットによる計算が行われている。一方、研究チームは、細長いゴム素材を機械的なビットとして使用した構造体を組み立てることで、電子回路を

    電力不要「“ゴム”コンピュータ」 伸縮により「0」と「1」をカウント【研究紹介】 レバテックラボ(レバテックLAB)
    h-hirai
    h-hirai 2024/05/28
    面白いけど実用的な応用はなさそう
  • 生成AIは今までのAIと何が違うのか?なぜいま盛り上がっているのか?|KAJI | 梶谷健人

    世界中で大きな盛り上がりを見せる「生成AI」。 生成AIを活用したChatGPTが史上最速で月間ユーザー数1億人を突破し、TIME誌の表紙を飾ったことは、その勢いを象徴する出来事だろう。 だが、ここで以下の2つの問いが浮かぶ。 生成AIは今までのAIと明確に何がちがうのか? なぜ今このタイミングで生成AIがここまで盛り上がっているのだろうか? この記事では上記2つの問いを海外のいくつかの記事を参考にしつつ解説していく。 生成AIと今までのAI技術との関係性まず生成AI技術とこれまでのAI技術との関係性を概観しておこう。 広い意味でのAI技術として、データの特徴を学習してデータの予測や分類などの特定のタスクを行う機械学習が生まれ、その中でデータの特徴をマシン自体が特定するディープラーニング技術が発展した。 そして、生成AIはこのディープラーニング技術の発展の延長上にある技術だと言える。 そし

    生成AIは今までのAIと何が違うのか?なぜいま盛り上がっているのか?|KAJI | 梶谷健人
    h-hirai
    h-hirai 2023/03/16
    正直全然わかってなかったので勉強になる
  • リアルタイム共同編集のアルゴリズム (Operational Transformation; OT) を理解する試み – RORO

    Google Docsのように文書を複数人でリアルタイムに共同編集できるアプリケーションがあります。あのような機能は、多かれ少なかれ、Operational Transformation (OT; 操作変換) という考え方を使って実現されているようです。興味があったので、このOTについて調べてみました。 (追記: これからは OT でなく CRDT だという話 → I was wrong. CRDTs are the future) なおGoogle Docsではいわゆる「リッチテキスト」を共同編集できますが、ここでは話を簡単にするために「プレーンテキスト」を共同編集することを想定します。 リアルタイム共同編集の流れ 共同編集システムの登場人物は次の通りです: サーバ x 1(各クライアントから届く編集操作をもとに、最新の文書を保持します) クライアント x N(文書を編集する側です) そ

  • 動画エンコーダ屋さんと会話して少しわかった画質の話(PSNR / RD曲線 / BD-rate) - Qiita

    動画コーデック/動画エンコード周りの話です。これは一例ですが、巷には「H.265はH.264と同等画質でデータ量が半分になる」みたいな言説が見られます。 H.264/MPEG-4 AVC以上に圧縮効率を高めて半分以下のビットレートを実現する。モバイルデバイスや、4K解像度などの超解像度ビデオにおける利用を想定している。 https://pc.watch.impress.co.jp/docs/news/585297.html たぶんより新しい技術だからすごいんだろうと思う一方で、画質・ビットレートに関する根拠というか考え方がさっぱりわかりません 画質と言われても何をどうやって測定しているのか どんな条件でもぴったり半分になるのか? さすがにそんなことはなさそう? よくわからなさすぎて困ったので、会社の自席の近くにいる動画エンコーダの専門家に基的な事項について教わってみたので、その内容をまと

    動画エンコーダ屋さんと会話して少しわかった画質の話(PSNR / RD曲線 / BD-rate) - Qiita
  • 中日新聞:自動車工場のガロア体 QRコードはどう動くか

    その誕生を地元新聞も経済新聞も記事にしなかった。2年後、『コードの情報を白黒の点の組み合わせに置き換える』と最下段のベタ記事で初めて紹介された時、その形を思い浮かべることができる読者はいなかった。いま、説明の必要すらない。QRコードはなぜ開発され、どう動くのだろうか。 QRコードは、自動車生産ラインの切実な要請と非自動車部門の技術者の「世界標準の発明をしたい」という野心の微妙な混交の下、1990年代前半の日電装(現デンソー)で開発された。 トヨタグループの生産現場では、部品名と数量の記された物理的なカンバンが発注書、納品書として行き来することで在庫を管理する。そのデータ入力を自動化するバーコード(NDコード)を開発したのがデンソーだ。 バブル全盛の1990年ごろ、空前の生産台数、多様な車種・オプションに応えるため、部品も納入業者も急激に増え、NDコードが限界を迎えていた。63桁の数字しか

  • 「世界最速・最大規模」──東芝、量子コンピュータより高速に組み合わせ最適化問題を計算するアルゴリズムを開発

    東芝は4月20日、量子コンピュータが得意とする計算の一つである「組み合わせ最適化問題」を、従来のコンピュータ(古典コンピュータ)で高速に解けるアルゴリズムを開発したと発表した。ある問題設定では、現行の量子コンピュータ(※1)に比べて10倍高速に解を求められるという。同アルゴリズムを活用したサービスプラットフォームの、19年中の事業化を目指す。 東芝は、自社が持つ量子計算の理論から、古典力学の「分岐現象」「断熱過程」「エルゴード過程」という3つの現象に着目。これらをうまく利用し、古典コンピュータ上で組み合わせ最適化問題を解くアルゴリズムを「シミュレーテッド分岐アルゴリズム」(Simulated Bifurcation, SB)と名付けた。 SBは従来の手法に比べて並列計算に向くとしており、GPUを8台つないだクラスタで10万変数・全結合の大規模問題を計算すると、数秒で良解(※2)を導けるとい

    「世界最速・最大規模」──東芝、量子コンピュータより高速に組み合わせ最適化問題を計算するアルゴリズムを開発
    h-hirai
    h-hirai 2019/05/22
    「シミュレーテッド分岐アルゴリズム」(simulated bifurcation)
  • 1