ナビエ–ストークス方程式(ナビエ–ストークスほうていしき、英: Navier–Stokes equations)は、流体の運動を記述する2階非線型偏微分方程式であり、流体力学で用いられる。[1][2]アンリ・ナビエとジョージ・ガブリエル・ストークスによって導かれた[3][4]。日本語の文献だとNS方程式とも略される。[5]ニュートン力学における運動の第2法則に相当し、運動量の流れの保存則を表す。
ナビエ–ストークス方程式(ナビエ–ストークスほうていしき、英: Navier–Stokes equations)は、流体の運動を記述する2階非線型偏微分方程式であり、流体力学で用いられる。[1][2]アンリ・ナビエとジョージ・ガブリエル・ストークスによって導かれた[3][4]。日本語の文献だとNS方程式とも略される。[5]ニュートン力学における運動の第2法則に相当し、運動量の流れの保存則を表す。
ベンチュリ管を空気が流れている。管の太さが小さくなると速度が増加するが、それには圧力の減少を伴う。圧力の変化は水柱の高さの差に現れる。 ベルヌーイの定理(ベルヌーイのていり、英語: Bernoulli's principle)またはベルヌーイの法則とは、完全流体のいくつかの特別な場合において、ベルヌーイの式と呼ばれる運動方程式の第一積分が存在することを述べた定理である。 ベルヌーイの式は流体の速さと圧力と外力のポテンシャルの関係を記述する式で、力学的エネルギー保存則に相当する。この定理により流体の挙動を平易に表すことができる。 ダニエル・ベルヌーイ(Daniel Bernoulli、1700年 - 1782年)によって1738年に発表された。なお、運動方程式からのベルヌーイの定理の完全な誘導はその後の1752年にレオンハルト・オイラーにより行われた[1]。ベルヌーイの定理が成り立つ条件とし
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く