<body> <p>このページにはフレームが使用されていますが、お使いのブラウザではサポートされていません。</p> </body>
<body> <p>このページにはフレームが使用されていますが、お使いのブラウザではサポートされていません。</p> </body>
NTTが「一つのクリスマスケーキを2人で公平に分けるには、どこにナイフを入れたらいいか」という「ケーキ分割問題」を正しく解くアルゴリズムを開発したそうだ(日刊工業新聞)。 「ケーキ分割問題」とは、2人で1つのケーキを分割する際に、両者が満足するように分割するにはどうすれば良いか、という問題。2人が異なる価値観を持っているというのがポイント。今回発表された新アルゴリズムは「両者が同時に切りたい場所を申告し、その中間でカット、申告した場所を含むケーキを分配する」というものだそうだ。 今日・明日とケーキを食べる機会は多いかと思うが、さっそく応用してみてはいかがだろうか。しかし、3人以上で分割する場合はどうすれば良いのだろうか?
as詳解 ActionScript 3.0アニメーション ―衝突判定・AI・3DからピクセルシェーダまでFlash上級テクニック を読んでいて、経路探索のアルゴリズムで A* が取り上げられていました。A* については、いろいろ検索して調べたりもしたのですが、やっぱり本に書いてあると理解しやすいですね。せっかくなので自分流に実装してビジュアライズしてみました。ダイクストラ法まずは A* の特別なケースでもあるダイクストラ法から見ていきます。クリックすると探索のシミュレーションが開始します。スタート地点(S)からゴール(G)への探索が始まります。色がついたところが「最短経路が決定した場所」です。スタート地点から少しずつ探索が完了していきます。半分ぐらい完了しました。まだまだ進みます。最後まで終わりました。最短経路を黒色矢印で表示しています。ダイクストラ法は、スタート地点から近いノード(=マス
高校生の時、数学の先生がこう言いました。 ゲームなんて、開発者が作ったルールの上で遊ばれるだけだ。 と。 その時、ゲーマーな自分はこう思いました。 ゲーマーは、開発者が作ったルールの上で遊ばれたい。 と。 というわけで、普段何気なくプレイしているゲームには、どのようなルール(アルゴリズム)があるのか。それを知るために、いろいろなゲームのアルゴリズムなどを解析しているページへのリンク集を作りました。 ほとんどのゲームのアルゴリズムは正式に発表されていないので、ユーザーの手による逆解析だったり、大学の研究による真面目な考察だったりします。(リンク先には、一部アルゴリズムと呼べないものも含まれています) 各種ゲームのプログラム解析 ドラクエ、FF、ロマサガのプログラム解析 DQ調査報告書(リンク切れ) ドラクエの物理ダメージ計算式は本質的にどれも同じだが、細かい部分で微妙に違う RPG INST
ゲームの作り方とアルゴリズムをジャンル別にまとめてみました。ゲーム制作や、プログラミングの勉強用にご活用ください。言語別ゲームプログラミング制作講座一覧もあわせてお読みください。 リンク切れがおきていたものは、URLを表示しておくので、Internet Archiveなどでキャッシュを表示させてみてください。 RPG ゲームの乱数解析 乱数を利用した敵出現アルゴリズムの解説 各種ゲームプログラム解析 FF、ドラクエ、ロマサガのプログラムの解析。乱数の計算など ダメージ計算あれこれ(http://ysfactory.nobody.jp/ys/prg/calculation_public.html) ダメージの計算式 エンカウントについて考えてみる エンカウント(マップでの敵との遭遇)の処理方法いろいろ RPGの作り方 - ゲームヘル2000 RPGのアルゴリズム ドルアーガの塔 乱数の工夫の
遺伝的アルゴリズム(いでんてきアルゴリズム、英語:genetic algorithm、略称:GA)とは、1975年にミシガン大学のジョン・H・ホランド(John Henry Holland)によって提案された近似解を探索するメタヒューリスティックアルゴリズムである。人工生命同様、偶然の要素でコンピューターの制御を左右する。4つの主要な進化的アルゴリズムの一つであり、その中でも最も一般的に使用されている。 遺伝的アルゴリズムはデータ(解の候補)を遺伝子で表現した「個体」を複数用意し、適応度の高い個体を優先的に選択して交叉・突然変異などの操作を繰り返しながら解を探索する。適応度は適応度関数によって与えられる。 この手法の利点は、評価関数の可微分性や単峰性などの知識がない場合であっても適用可能なことである。 必要とされる条件は評価関数の全順序性と、探索空間が位相(トポロジー)を持っていることであ
k近傍法(ケイきんぼうほう、英: k-nearest neighbor algorithm, k-NN)は、入力との類似度が高い上位 k 個の学習データで多数決/平均するアルゴリズムである[1]。 パターン認識(分類・回帰)でよく使われる。最近傍探索問題の一つ。k近傍法は、インスタンスに基づく学習の一種であり、怠惰学習 の一種である。その関数は局所的な近似に過ぎず、全ての計算は分類時まで後回しにされる。また、回帰分析にも使われる。 k近傍法は以下の手順からなる: 入力と全学習データとの類似度(距離)測定 類似度上位 k 個の選出 選出されたデータの多数決あるいは平均 すなわち「入力とよく似た k 個のデータで多数決/平均する」単純なアルゴリズムである[1]。 例えば環境(気温/湿度/風速)から天気(雨/曇り/晴れ)を予測する分類問題を考える。k=5 のk近傍分類では、過去100日の環境-天
隠れマルコフモデル(かくれマルコフモデル、英: hidden Markov model; HMM)は、確率モデルのひとつであり、観測されない(隠れた)状態をもつマルコフ過程である。 同じマルコフ過程でも、隠れマルコフモデルより単純なマルコフ連鎖では、状態は直接観測可能であり、そのため、状態の遷移確率のみがパラメータである。一方、隠れマルコフモデルにおいては、状態は直接観測されず、出力(事象)のみが観測される。ただしこの出力は、モデルの状態による確率分布である。従って、ある隠れマルコフモデルによって生成された出力の系列は、内部の状態の系列に関する何らかの情報を与えるものとなる。「隠れ」という語はモデルが遷移した状態系列が外部から直接観測されないことを指しており、モデルのパラメータについてのものではない。たとえパラメータが既知であっても隠れマルコフモデルと呼ばれる。隠れマルコフモデルはごく単純
そろそろ論文紹介記事を書いてみます. NLP2010のプログラムにもあるとおり,しばらく係り受け構文解析周りをやっていました(います).私の出身研究室では構文解析をやっている人がたくさんいたのですが,最近その面白さがなんとなくわかってきました.いや,一応私も2年間日本語係り受け解析の演習担当やってたよ! 構文解析のおもしろさというのは,言語学,機械学習,プログラミング,情報科学が非常にバランスよくミックスされた問題で,いろんな定式化の仕方や,いろんな技術が,いろいろな組み合わせで,かつわりとキレイな形で程々の難しさに仕上がっているあたりにあると思います.今日は,特に情報科学的教養が大事でしたという話を3つ. Non-Projective Dependency Parsing using Spanning Tree Algorithms Ryan McDonald, Fernando Per
k平均法(kへいきんほう、英: k-means clustering)は、非階層型クラスタリングのアルゴリズム。クラスタの平均を用い、与えられたクラスタ数k個に分類することから、MacQueen がこのように命名した。k-平均法(k-means)、c-平均法(c-means)とも呼ばれる。 何度か再発見されており、まず、Hugo Steinhusが1957年に発表し[1]、Stuart Lloydが1957年に考案し、E.W.Forgyが1965年に発表し[2]、James MacQueenが1967年に発表しk-meansと命名した[3]。 数式で表現すると、下記最適化問題を解くアルゴリズム[4]。本アルゴリズムでは最小値ではなく初期値依存の極小値に収束する。 単純なアルゴリズムであり、広く用いられている。分類をファジィ化したファジィc-平均法やエントロピー法をはじめ、データ構造を発見す
集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く