Extracting and Composing Robust Features with Denoising Autoencoders Pascal Vincent vincentp@iro.umontreal.ca Hugo Larochelle larocheh@iro.umontreal.ca Yoshua Bengio bengioy@iro.umontreal.ca Pierre-Antoine Manzagol manzagop@iro.umontreal.ca Universit´e de Montr´eal, Dept. IRO, CP 6128, Succ. Centre-Ville, Montral, Qubec, H3C 3J7, Canada Abstract Previous work has shown that the difficul- ties in le
GPUなのに学習速度があまり速くならない、あるいはCPUより遅い時ってありませんか? そういうとき自分はまず「nvidia-smi -l 1」でGPUの使用率を見て100%に近い値を維持できているかどうかチェックします。NVIDIA System Management Interfaceというものらしいです*1-lオプションに数値を指定するとn秒間隔でループしてその時のGPUの状態を出力してくれます。よく見る項目はGPU使用率、メモリ使用量、温度あたりでしょうか。 この使用率が低ければ低いほど効率的にGPU計算できていないことになります。計算以前のところがボトルネックになっている可能性が高い。 list → numpy or cupyへの変換速度で差が出る pythonのリストをchainerで使えるようにnumpy or cupyに変換する時の速度が両者でだいぶ異なるようです。後者の方が
Deep Neural Networkを使って画像を好きな画風に変換できるプログラムをChainerで実装し、公開しました。 https://github.com/mattya/chainer-gogh こんにちは、PFNリサーチャーの松元です。ブログの1行目はbotに持って行かれやすいので、3行目で挨拶してみました。 今回実装したのは”A Neural Algorithm of Artistic Style”(元論文)というアルゴリズムです。生成される画像の美しさと、画像認識のタスクで予め訓練したニューラルネットをそのまま流用できるというお手軽さから、世界中で話題になっています。このアルゴリズムの仕組みなどを説明したいと思います。 概要 2枚の画像を入力します。片方を「コンテンツ画像」、もう片方を「スタイル画像」としましょう。 このプログラムは、コンテンツ画像に書かれた物体の配置をそのま
CUDA Zone CUDA® is a parallel computing platform and programming model developed by NVIDIA for general computing on graphical processing units (GPUs). With CUDA, developers are able to dramatically speed up computing applications by harnessing the power of GPUs. In GPU-accelerated applications, the sequential part of the workload runs on the CPU – which is optimized for single-threaded performance
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く