タグ

割り算に関するk_yamoriのブックマーク (2)

  • 何故私は計算が小学校で一番速かったのか? - やねうらおブログ(移転しました)

    小学校のころ、私は四則演算が学校で一番速く出来た。そんな私だが、実は九九はほとんど覚えていなかった。 掛け算や割り算を速く行なうのに必要なのは九九じゃないことを私は知っていたからだ。 簡単な例を出そう。あなたは、40÷6をどうやって計算するだろうか? 九九を持ち出してきて、「6×8 = 48 あれ、大きすぎたか。6×7 = 42、ありゃ、まだ大きいか。6×6 = 36。おお、40より小さくなった。40-36 = 4だから、6余り4が答え!」なんてやらないだろうか。これは凄く無駄な作業だ。どう考えてもやり方がおかしい。 ここで必要なのは、九九ではなく、36〜41は、6で割ったら商は6という知識である。「余り」もセットにして覚えてあるとなお良い。 「÷6」をするとき、割られる数が60以上であることは考えなくて良い。また、もう少し一般化して言えば、「÷N」するときは、割られる数がN*10以上であ

    何故私は計算が小学校で一番速かったのか? - やねうらおブログ(移転しました)
  • 昔、小学生に割り算の筆算教えてた時の教え方晒す: 不倒城

    その内うちの子用に必要になりそうなので、備忘録的に。 昔というのは十数年前。一応このやり方で、大体の子は三桁÷二桁の割り算の筆算ができるところまでもってこれてた。教職免許もちではないので、実際の教壇でどう教えるのかは知らない。 対象者は、「割り算の筆算が分からない」という子。対象年齢は小学校高学年、場合によっては中学校低学年。三桁÷二桁なのは、二桁×二桁の掛け算が出来るかどうかもついでに確認出来るから、というのが理由。 仮に、205÷17という割り算の問題を想定する。途中の掛け算がシンプルなのと、余りが1出るので教えやすい、というのが理由。当時も大体この式を使っていた。 前提その一。教え方をステップ化して、どこでつまづくかを確認する。全部一度に理解出来る子は、少なくとも私が教えた中では滅多にいなかった。また、小4くらいで算数が苦手な子は、かなり初歩でつまづいたままなんとなく放置している場合

  • 1