タグ

数学とwikipediaに関するkana321のブックマーク (6)

  • なぜWikipediaの説明はわかりにくいのか(数学とか) - 大人になってからの再学習

    調べ物をするときにWikipediaの存在は絶大だ。どんな些細なものに対しても詳しい説明が載っている。 だけど、数学、物理などの理工系の教科書に登場するキーワードについては、Wikipediaの説明はほとんど役に立たない。 具体例をいくつか。 ■ フーリエ変換 数学においてフーリエ変換(フーリエへんかん、英語: Fourier transform; FT)は実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 (frequency domain representation) と呼ばれる。・・ http://ja.wikipedia.org/wiki/%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B ■ NP困難 NP困難(-こんなん、N

    なぜWikipediaの説明はわかりにくいのか(数学とか) - 大人になってからの再学習
  • 違法素数 - Wikipedia

    違法素数(いほうそすう/英: illegal prime)とは、素数のうち、違法となるような情報やコンピュータプログラムを含む数字。違法数(英語版)の一種である。 2001年、違法素数の1つが発見された。この数はある規則に従って変換すると、DVDのデジタル著作権管理を回避するコンピュータプログラムとして実行可能であり、そのプログラムはアメリカ合衆国のデジタルミレニアム著作権法で違法とされている[1]。 DVDのコピーガードを破るコンピュータプログラムDeCSSのソースコード 1999年、ヨン・レック・ヨハンセンはDVDのコピーガード (Content Scramble System; CSS)を破るコンピュータプログラム「DeCSS」を発表した。ところが2001年5月30日、アメリカ合衆国の裁判所は、このプログラムの使用を違法としただけではなく、ソースコードの公表も違法であると判断した[2

  • モンティ・ホール問題 - Wikipedia

    モンティ・ホール問題 閉まった3つのドアのうち、当たりは1つ。プレーヤーが1つのドアを選択したあと、例示のように外れのドアが1つ開放される。残り2枚の当たりの確率は直感的にはそれぞれ 1/2(50%)になるように思えるが、はたしてそれは正しいだろうか。 モンティ・ホール問題(モンティ・ホールもんだい、英: Monty Hall problem)とは、確率論の問題で、ベイズの定理における事後確率、あるいは主観確率の例題の一つとなっている。モンティ・ホール(英語版)(Monty Hall, 名:Monte Halperin)が司会者を務めるアメリカゲームショー番組、「Let's make a deal(英語版)[注釈 1]」の中で行われたゲームに関する論争に由来する。一種の心理トリックになっており、確率論から導かれる結果を説明されても、なお納得しない者が少なくないことから、モンティ・ホール

    モンティ・ホール問題 - Wikipedia
  • ABC予想 - Wikipedia

    ABC予想(エービーシーよそう、英語: abc conjecture)は、1985年にジョゼフ・オステルレとデイヴィッド・マッサーにより提起された数論の予想である。オステルレ=マッサー予想(英語: Oesterlé–Masser conjecture)とも呼ばれる[1][2]。 これは多項式に関するメーソン・ストーサーズの定理の整数における類似であり、互いに素でありかつ a + b = c を満たすような3つの自然数(この予想に呼び方を合わせると)a, b, c の和と積の関係について述べている[3][4]。 ABC予想は、この予想から数々の興味深い結果が得られることから有名になった。数論における数多の有名な予想や定理がABC予想から直ちに導かれる。 ドリアン・モリス・ゴールドフェルド(英語版)は、ABC予想を「ディオファントス解析で最も重要な未解決問題」であるとしている[5]。 自然数

  • アラン・チューリング - Wikipedia

    マンチェスターのSackville Gardensにあるアラン・チューリングの銅像 アラン・マシスン・チューリング(Alan Mathison Turing英語発音: [tjúǝrɪŋ]〔音写の一例:テュァリング〕, OBE, FRS 1912年6月23日 - 1954年6月7日)は、イギリスの数学者、暗号研究者、計算機科学者、哲学者である。日語において姓 Turing はテューリングとも表記される[2]。 電子計算機の黎明期の研究に従事し、計算機械チューリングマシンとして計算を定式化して、その知性や思考に繋がりうる能力と限界の問題を議論するなど情報処理の基礎的・原理的分野において大きな貢献をした。また、偏微分方程式におけるパターン形成の研究などでも先駆的な業績がある。 経歴・業績の基盤となる出発点は数学であったが、第二次世界大戦中に暗号解読業務に従事した。また黎明期の電子計算機の開発

    アラン・チューリング - Wikipedia
  • 黄金比 - Wikipedia

    出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。 記事の信頼性向上にご協力をお願いいたします。(2013年3月) 黄金比(おうごんひ、英: golden ratio)とは、次の値で表される比のことである: 黄金長方形(縦横の長さの比が黄金比( 1: 1.618…)である長方形)から最大正方形を切り落とすと、元の長方形と相似になる。赤線は黄金螺旋、緑線は正方形内の四分円を接続したものである。黄色は重なっている部分を表す。 以下で述べるような数理的な性質は、有理数にならないこの値のみが持つ性質であり、有理近似等には基的には意味が無い。「デザインを美しくする」などといった巷間よく見られる説については#用途を参照。小数に展開すると 1 : 1.6180339887... あるいは 0.6180339887... : 1 といった値となる。 黄金比は貴金属比の

    黄金比 - Wikipedia
  • 1