見ていて楽しい感じだったのでご紹介。マニアックだが。 Algomationはさまざまなアルゴリズムをアニメーションで解説してくれるサイトだ。 よくあるソート系のアルゴリズムや、オセロを題材にした人工知能のアルゴリズムまで網羅している。 また自分でアルゴリズムを作って投稿することも可能だ。これ系の思考実験が好きな人は覗いてみるといいですね。

[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。 CEDECの講演 「ゲーム世界を動かすサイコロの正体 ~ 往年のナムコタイトルから学ぶ乱数の進化と応用」 より、 乱数を使った ドルアーガの塔の 迷路生成のアリゴリズムについて紹介です。 講演内容は、こちらです http://sekigames.gg-blog.com/Entry/288/ 講演者の方も、 「ナムコの乱数を取り上げるなら、ドルアーガの塔をせざるえない」 という程、外せない内容との事です 「このテーマだけで講演時間を全て使っても説明しきれない」 (講演では、時間の関係で 触りのみでしたので ある程度、せっき~の解釈で補完しています) -------------------------------------------------------------------
次のサービスや製品はどれも身近にありますが、これらに共通していることはなんでしょう。 Amazonの「この商品を買った人はこんな商品も買っています」 はてなブックマークの「関連エントリー」 Google 翻訳 Google 日本語入力 メールクライアントのスパムフィルタ デジタルカメラの自動顔認識 ニンテンドーDSの手書き文字認識 買い物履歴、ユーザが書いたコメントやタグ、Webに無数にあるページ、メール、画像や動画と対象はそれぞれ異なっていますが、どれも「データから有益な情報を取り出す」ということを行っています。 これらは「機械学習」という技術を使って実現されているのです。 機械学習の応用範囲 機械学習は冒頭で挙げた以外にも、様々な分野で使われています。 例えば、ノイズ除去や特徴の抽出を目的とした利用パターンがあります。音声認識や画像認識、文字認識(OCR)などはその代表格です。それらも
2014年7月30日より8月27日まで開催した、paizaオンラインハッカソン(略してPOH![ポー!])Lite「天才火消しエンジニア霧島 もしPMおじさんが『丸投げ』を覚えたら」ですが、どのような解法が有ったのでしょうか。 今回もPOH恒例の「解説図解」を、天才火消しエンジニア霧島が解説するとしたら、という体で書いてみたいと思います。(特に文体とか変えませんがw 最後に霧島壁紙DLが有るので是非最後までお読みください。) ■どのような高速化ステップがあるのか? 今回の問題ですが、実行時間に大きく影響する計算量別にみたアプローチでは、すべての組み合わせを出して、人数を満たして一番安い組み合わせを見つける全探索[計算量はO(2^N)]と、動的計画法[計算量はq = max(q_i) としてO(Nq) ](やり方によってはO(NM))による2種類があります。 また全探索を改良し、効率的な枝刈
目次 『言語実装パターン』推薦のことば 謝辞 前書き 第I部 さあ、構文解析に取りかかろう 1章 言語アプリケーションのいろは 1.1 全体のあらまし 1.2 パターンを一巡する 1.2.1 入力文の構文解析をする 1.2.2 木を構築する 1.2.3 木の走査をする 1.2.4 入力が意味する内容を見つけ出す 1.2.5 入力文をインタプリタで実行する 1.2.6 ある言語から別の言語へと変換する 1.3 アプリケーションを解体する 1.3.1 バイトコードインタプリタ 1.3.2 Javaバグ検出器 1.3.3 Javaバグ検出器其の弐 1.3.4 Cコンパイラ 1.3.5 Cコンパイラを活用した C++実装 1.4 パターンを選んでアプリケーションを組み上げる 2章 基本的な構文解析パターン 2.1 句の構造を識別する 2.2 再帰的下向き構文解析器を構築する 2.3 文法 DSLを
UNIXの基本的なコマンドの1つであるdiff。 これに実装されているアルゴリズムは実に興味深い世界が広がっています。 本稿では、筆者が開発した独自ライブラリ「dtl」をもとに「diffのしくみ」を解説します。 はじめに diffは2つのファイルやディレクトリの差分を取るのに使用するプログラムです。 ソフトウェア開発を行っている方であれば、SubversionやGitなどのバージョン管理システムを通して利用していることが多いかと思います。本稿ではそのdiffの動作原理について解説します。 差分の計算の際に重要な3つの要素 差分を計算するというのは次の3つを計算することに帰結します。 編集距離 2つの要素列の違いを数値化したもの LCS(Longest Common Subsequence) 2つの要素列の最長共通部分列 SES(Shortest Edit Script) ある要素列を別の要
TOPICS Programming , Web , Python 発行年月日 2008年07月 PRINT LENGTH 392 ISBN 978-4-87311-364-7 原書 Programming Collective Intelligence FORMAT Print 本書は現在注目を集めている「集合知(collective intelligence)」をテーマにした書籍です。機械学習のアルゴリズムと統計を使ってウェブのユーザが生み出した膨大なデータを分析、解釈する方法を、基礎から分かりやすく解説します。本書で紹介するのは「購入・レンタルした商品の情報を利用した推薦システム」、「膨大なデータから類似したアイテムを発見し、クラスタリングする方法」、「数多くの解決策の中から最適なものを探し出す方法」、「オークションの最終価格を予想する方法」、「カップルになりそうなペアを探す方法」、
アルゴリズムを理解するのにビジュアル化することは非常に有効で、プログラムをビジュアル化することで理解が進むのもまた同じ。そこで、アルゴリズム・プログラミングの理解が進むようにと、アルゴリズムを記述したプログラムコードを一挙にビジュアル化することで、アルゴリズム&プログラミングを同時に学習できる一挙両得なサービス「VisuAlgo」が公開されています。 VisuAlgo - visualising data structures and algorithms through animation https://visualgo.net/en 上記のVisuAlgoサイトで試しにソートアルゴリズムの基本プログラム「バブルソート」をビジュアル化してみます。「Sorting」の「bubble」をクリック。 検索窓の下に「bubble」と表示されたのを確認したら「Sorting」の画像をクリック。
はじめに 恐らく、プログラマの中で配列内の要素を整列させたりするソートにお世話にならなかった人、というのは余り考えられないのではないでしょうか。しかし、とはいえ、大抵はソートを自前で実装せず、組み込み関数であったり、あるいは何らかのライブラリで済ませることが殆どだと思う。 車輪の再発明というよりも、バグとか、自分が考慮していなかった挙動などを避けるために、自前でソートを組むことは余りないのですが、とはいえ、自分なりにソートを実装して見ると、それがどういう特徴を持ったソートであるか、というのがわかりますし、また、ソートというのはいったいどういう操作で実現されるのかという洞察が深まってくるなあ、という実感があったりする。 なので、今回はあるソート二つについての話を書くのが趣旨です。 最高のアルゴリズムはある、だが最悪のアルゴリズムは何か 一口にソートといったところで、ソート自体にも銀の弾丸があ
機械学習の問題 については以前に紹介したので、次はどんなデータを収集し、どんな機械学習アルゴリズムを使うことができるのかを見ていきましょう。本投稿では、現在よく使用されている代表的なアルゴリズムを紹介します。代表的なアルゴリズムを知ることで、どんな技法が使えるかという全体的なイメージもきっとつかめてくるはずですよ。 アルゴリズムには多くの種類があります。難しいのは、技法にも分類があり拡張性があるため、規範的なアルゴリズムを構成するものが何なのか判別するのが難しいということですね。ここでは、実際の現場でも目にする機会の多いアルゴリズムを例にとって、それらを検討して分類する2つの方法をご紹介したいと思います。 まず1つ目は、学習のスタイルによってアルゴリズムを分ける方法。そして2つ目は、形態や機能の類似性によって(例えば似た動物をまとめるように)分ける方法です。どちらのアプローチも非常に実用的
2014年4月16日より2014年5月14日まで開催していたpaizaオンラインハッカソン(略してPOH![ポー!])Vol.2「女子大生とペアプロするだけの簡単なお仕事です!」で提出された最速コードはどのような高速化のアプローチでで生み出されたのでしょうか? POH Vol.2に登場した女子大生インターンプログラマの木野ちゃん(左のイラスト)にアルゴリズムを図解で教えるとしたら、どう教えるだろうか、という事で、今回は図解してみました。 今回は前回の最速コード発表レポート(【結果発表】女子大生プログラマの心を鷲掴みにした最強のコード8選)に引き続き、最速コードの裏側に迫ります。 ■高速化のアプローチ方法について 今回もPOH Vol.1 と同様に、POH Vol.2では計算量の改善による高速化を柱とするアプローチを想定して出題されました。基本は定数倍高速化によって想定解法よりも悪い計算量の
業務経歴: Sierでのソフトウェア開発・大手メディアでのサービス運用を経て2012年サイバーエージェント入社。 アメーバ事業本部コミュニティサービスの開発責任者を経て、現在はアドテクスタジオで広告配信技術に注力。 好きな分野はグラフ探索とチューリングマシン。 ソーシャルサービスでは、ユーザ間のつながりやユーザ同士の類似性がとても重要です。 つながりの近いユーザや自分と似ているユーザを「もしかして友だち?」とサジェストすることでユーザ間のつながりを伸展させることができます。 そこで、ユーザの「つながり」具合が似ているユーザを「友だちかもしれないユーザ」としてサジェストを行うことを考えました。 しかし「つながり」のデータというのはユーザ数のベキ乗であるため、容量が大きくなりやすい性質があります。 即ち、「つながり」類似度の算出には時間がかかる、ということです。 この「つながり」類似度算出
平方数とは、ある整数の平方(=二乗)であるような整数のことを言います。つまり、0,1,4,9,16,...が平方数ということになります。 ところで、与えられた整数が平方数かどうかを判定するにはどうすれば良いでしょうか。与えられた整数の平方根の小数点以下を切り捨て、それを二乗して元の数になるかどうか、というのがすぐ思いつく実装です。 <?php function is_square($n) { $sqrt = floor(sqrt($n)); return ($sqrt*$sqrt == $n); } しかし、平方根の計算は比較的重い処理です。もっと高速化する方法は無いのでしょうか。 多倍長整数演算ライブラリGNU MPには平方数かどうかを判定するmpz_perfect_square_p関数が存在します(PHPでもgmp_perfect_square関数として利用できます)。本稿ではこの実装
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く