タグ

ブックマーク / www.yasuhisay.info (3)

  • 半教師あり学習とは結局のところ何なのか? - yasuhisa's blog

    半教師あり学習の質はどこにあるのか? 現在の半教師あり学習の悪い(?)ところ その他 今週ゼミで半教師あり学習のイントロダクション的なものをやる予定なので資料を作っている。 Self Training Generative Models S3VMs Graph-Based Algorithms Multiview Algorithms などなどの手法を簡単に紹介する予定(Blogにもあげるかもしれない)。で、資料を作っていて、「半教師あり学習とは、つまりラベルありデータだけではdata sparsenessに負けてしまうところをラベルなしデータによって補う方法ではないか」というところに行きついた気がする。 半教師あり学習 from syou6162 半教師あり学習の質はどこにあるのか?Semi-Supervised Learning Tutorialの資料からいくつか例で見てみよう。テ

    半教師あり学習とは結局のところ何なのか? - yasuhisa's blog
  • 実タスクで機械学習を導入するまでの壁とその壁の突破方法 - yasuhisa's blog

    社内で機械学習の案件があった際に、機械学習の経験者しか担当できないと後々の引き継ぎで問題が起こりがちです。これを防ぐために、機械学習に興味があり、これまで機械学習を経験したことがないエンジニアにも担当できる体制を整えられることが望ましいです。しかし、機械学習のことに詳しく知らないディレクターやエンジニアにとっては、どのような機械学習の理解段階ならばタスクを任せられるかの判断をするのはなかなか困難です。そこで、このエントリでは機械学習を実タスクでやるまでに乗り越えるべき壁だと私が思っているものについて説明します。 第一の壁: 綺麗なデータで機械学習の問題を解ける 講義で扱われるような綺麗なデータを扱える 行列形式になっていて、欠損値や異常値もない 上記のデータを回帰や分類問題として解くことができる 実際に解く際にはライブラリを使って解いてよい 手法を評価する上で何を行なえばよいか(Preci

    実タスクで機械学習を導入するまでの壁とその壁の突破方法 - yasuhisa's blog
  • 今年よかった習慣: ライフログ収集および可視化 - yasuhisa's blog

    データを眺めるのが好き 収集している情報 実現方法 データから分かった知見(?) 今後 年末なので、今年買ってよかったものに引き続き、今年やってみてよかった習慣について書いてみたいと思います。 データを眺めるのが好き 昔からデータを眺めるのは好きだったんですが、今年の5月くらいから自分に関するデータをとにかく収集してみました。可視化することで何か有益な視点だったり、生活の改善点が見つかるのではないか、という目的です。色んなデータを集めまくった結果、以下のようなグラフができあがります。ちょっと画像が小さいですが、毎日の歩いた歩数や体重、気温、録画した番組名、自宅マシンの負荷状況などが載っています。 収集している情報 上の画像ではとりあえずBlogに上げれるようなデータしか見せていないですが、収集している情報としては以下のようなものがあります。使用しているスクリプトで公開できるものはgithu

    今年よかった習慣: ライフログ収集および可視化 - yasuhisa's blog
  • 1