ブックマーク / heartruptcy.blog.fc2.com (2)

  • 変分ベイズの自分向けの説明

    StanでADVIが使えるようになったので、変分ベイズの基礎は抑えておきたいなぁと思って最近学んでいました。自分向けのメモとして残します。 ●対数周辺尤度・変分下限・KL情報量 目的は事後分布 の最もよい近似となる を求めることです。 にはあとで因子分解可能 という条件を入れます。 イエンセンの不等式を使って、対数周辺尤度 を下から評価すると、          を変分下限と呼びます。任意の関数 の関数です。対数周辺尤度はevidenceとも呼ばれるため、変分下限はevidence lower bound、略してELBOとも呼ばれます。対数周辺尤度と変分下限の差は、          となります。これは と事後分布 のKL情報量(Kullback-Leiblerdivergence)です。対数周辺尤度が にはよらない、データ のみから決まる定数であることを考えると、事後分布の最もよい近似と

  • トピックモデルシリーズ 1 概要

    せっかく区切りがいいところまで勉強したのにoutputしないと忘れそうなので、メモを兼ねてしばらくトピックモデルについて記事を書きます。JAGSで実行したところ、そこそこ速いし収束もしました。しかしほとんど意味をなさないような幅広い推定結果になってしまいましたのでStanを使うことにしました。はじめにStanで実装するメリット・デメリットについて簡単に触れたいと思います。 メリット ・実装がラク。LDAでも30行ぐらい。 ・ややこしい推論部分は一切実装しなくてOK。全部StanのHMCサンプリングにお任せ。 ・モデルの拡張が簡単。 デメリット ・計算が遅い。文書x単語種類が1000x1500・総単語数12000のケースでは トピック数が20, iter=1000で9時間, iter=10000で35時間でした。Stanのmulti-threading対応待ち。 ・データが少ないと収束しない

  • 1