タグ

ブックマーク / www.yasuhisay.info (3)

  • Looker Studioの魅力と便利な使い方を紹介します - yasuhisa's blog

    初めて使ったBIツールはLooker Studioのid:syou6162です。これまでTableau / Looker(≠ Looker Studio) / Metabase / Redash / Connected Sheetsなど色々なBIツールを触ってきましたが、不満は色々ありつつも個人的に一番しっくりきて愛着があるのはLooker Studioです。このエントリでは、その魅力と便利な使い方や注意点について書きます。例によって、社内勉強会向けの内容を外向けに公開しているため、内容の網羅性などは特に担保していないことにご注意ください。 Looker Studioの魅力 利用のハードルが限りなく低い & Google Workspaceとの連携が便利 複雑過ぎることができないので、諦めが付けやすい ちゃんとBIツールになっている Looker Studioの便利な使い方 多様なデータソ

    Looker Studioの魅力と便利な使い方を紹介します - yasuhisa's blog
    kazoo_oo
    kazoo_oo 2024/07/22
  • 機械学習をプロダクトに入れる際に考える採用基準について - yasuhisa's blog

    サービスに機械学習技術(例えばSVM)を入れる際に、「この機械学習技術番サービスに投入しても大丈夫なものか?」を考える基準がまとまっていると人に説明するときに便利だなとふと思ったのでまとめてみました。散々言われ尽くされている話だとは思います。 前提 考慮に入る採用基準 予測精度 (コードの)メンテナンスの容易性 計算オーダー 学習時 予測時 挙動のコントロールのしやすさ/予測説明性の容易さ チューニングの必要性 その他 まとめ 前提 機械学習がプロダクトの主要な武器になる(例えば最近話題になっているGoogle翻訳におけるNMT)ものではなく、サービスにデータがまずあり、機械学習でデータを活用することにより、そのサービスを支えていくようなものを前提に考えています(例えばCGMサービスのスパム判定)。また、投稿内容は私個人の意見であり、所属組織を代表するものではありませんとお断りしておき

    機械学習をプロダクトに入れる際に考える採用基準について - yasuhisa's blog
    kazoo_oo
    kazoo_oo 2016/11/21
  • はてな社内の勉強会で構造学習について発表しました - yasuhisa's blog

    先週末、はてな社内の勉強会で構造学習、特に実装が簡単な構造化パーセプトロンについて発表しました。発表資料と説明用にサンプルで書いたPerlの品詞タグ付けのコードへのリンクを張っておきます。 今日からできる構造学習(主に構造化パーセプトロンについて) from syou6162 structured_perceptron/structured_perceptron.pl at master · syou6162/structured_perceptron 「えっ、Perlかよ」という人がいるといけないので、Clojureで構造化パーセプトロンを使った係り受け解析のサンプルコードへのリンクも張っておきます(2種類あります)。PerlもClojureもあれば8割くらいの人はカバーできそうなので、安心ですね。 syou6162/simple_shift_reduce_parsing syou616

    はてな社内の勉強会で構造学習について発表しました - yasuhisa's blog
    kazoo_oo
    kazoo_oo 2016/06/27
  • 1